## KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS AND STATISTICS Term 151

#### STAT 212 BUSINESS STATISTICS II Second Major Exam <u>Allowed time 75 minutes</u> Wednesday October 28, 2015

Please circle your instructor name:

R. Anabosi

# M. Saleh

| N 1    | TN 44  | • | Cal | <del>44</del> . |
|--------|--------|---|-----|-----------------|
| iname: | 11) H  |   | Sri | #:              |
|        | <br>-0 |   |     |                 |

Important Note:

- 1) You must **show all work** to obtain full credit for questions on this exam.
- <u>DO NOT round</u> your answers at each step. Round answers only if necessary at your final step to <u>4 decimal places</u>.

| Question No | Full Marks | Marks Obtained |
|-------------|------------|----------------|
| Q1          | 19         |                |
| Q2          | 9          |                |
| Q3          | 19         |                |
| Q4          | 13         |                |
| Total       | 60         |                |

### **Question One** (19 points):

It might be thought that shoppers prefer Saturday to other days of the week for their shopping. A study showed the results for 200 shoppers surveyed in <u>each</u> of the three age groups. The <u>percentages</u> are shown in the table below:

|                    | Age      |       |         |
|--------------------|----------|-------|---------|
| Major shopping day | Under 35 | 35-54 | Over 54 |
| Saturday           | 24%      | 28%   | 12%     |
| Not a Saturday     | 76%      | 72%   | 88%     |

Using the Excel partial output below

| Expected Frequencies |                       |          |  |  |  |
|----------------------|-----------------------|----------|--|--|--|
|                      | Column variable       |          |  |  |  |
| Row variable         | Row variable C1 C2 C3 |          |  |  |  |
| R1                   |                       | 42.66667 |  |  |  |
| R2                   | 157.3333              |          |  |  |  |
| Total                |                       |          |  |  |  |

(fo-fe)^2/fe 0.666667 4.166667 8.166667 0.180791 1.129944 2.214689

- a. Complete the table in the output above.
- b. Is there evidence of a significant difference among the age groups with respect to major grocery day? (use 1% level of significance) (7 points)

 $H_0$ :

 $H_1$ :

Assumption(s):

Test Statistic:

Critical value:

Decision rule:

Decision:

Conclusion:

(4 points)

# Page | **3**

c. Assume that there is at least one different age group, and then find the different age group(s). (8 points)

### **Question Two** (9 points):

The personnel manager of a large department store wants to reduce absenteeism among sales associates. She decides to institute an incentive plan that provides financial rewards for sales associates who are absent fewer than 5 days in a given calendar year. A sample of 100 sales associates selected at the end of the <u>second</u> year reveals the following:

|                | Year 2         |                |  |
|----------------|----------------|----------------|--|
| Year 1         | <5 days absent | ≥5 days absent |  |
| <5 days absent | 32             | 4              |  |
| ≥5 days absent | 25             | 39             |  |

a. At the 3% level of significance, is there evidence that the proportion of employees absent fewer than 5 days was lower in year 1 than in year 2? (7 points)

 $H_0$ :

 $H_1$ :

Assumption(s):

Test statistic:

*p*-value:

Decision rule:

Decision:

Conclusion:

b. Interpret the meaning of the *p*-value found in part (a). (2 points)

### **Question Three** (19 points):

The value of a sport franchise is directly dependent on the amount of revenue that a franchise can generate. The data in the table below represent the value in 2005 (in millions of dollars) and the annual revenue (in millions of dollars) for 11 baseball franchises.

| Team              | Value | Revenue |
|-------------------|-------|---------|
| Anaheim           | 368   | 157     |
| Baltimore         | 359   | 156     |
| Boston            | 617   | 206     |
| Chicago White Sox | 315   | 157     |
| Cleveland         | 352   | 150     |
| Detroit           | 292   | 146     |
| Kansas City       | 239   | 117     |
| Minnesota         | 216   | 114     |
| New York Yankees  | 1026  | 277     |
| Oakland           | 234   | 134     |
| Seattle           | 428   | 179     |
| Total             | 4446  | 1793    |

Given the partial Excel output below:

ANOVA

|            | df | SS          | MS          | F           | Significance F |
|------------|----|-------------|-------------|-------------|----------------|
| Regression | 1  | 532349.348  | 532349.348  | 259.8475546 | 6.02738E-08    |
| Residual   | 9  | 18438.28833 | 2048.698703 |             |                |
| Total      | 10 | 550787.6364 |             |             |                |

|           | Coefficients | Standard Error | t Stat       | P-value     |
|-----------|--------------|----------------|--------------|-------------|
| Intercept | -415.7613323 | 52.66457653    | -7.894515815 | 2.46072E-05 |
| Revenue   | 5.030326077  | 0.312059078    | 16.11978767  | 6.02738E-08 |

## Answer the following:

a. Comment on the scatter plot below.



(3 points)

b. Estimate the franchise value of Baltimore team and find the error of estimation.(3 points)

- c. Interpret the meaning of the slope of the regression line in the context of this problem. (3 points)
- d. At 1% significance level, is there evidence that there is a direct relationship between the franchise average value and the annual revenue generated? (6 points)

e. Compute a 99% interval estimate for the franchise value of Baltimore. (4 points)

### **Question Four** (13 points):

A company that holds the DVD distribution rights to movies previously released only in theatres wants to estimate sales of DVD's (in thousands) based on box office success (in \$millions). Given the following data summary:

 $\sum_{1}^{30} x = 1977.76$ ,  $\sum_{1}^{30} y = 4366.24$ ,  $\sum_{1}^{30} xy = 327424.76$ ,  $\sum_{1}^{30} (x - \bar{x})^2 = 9134.07375$ , and  $\sum_{1}^{30} (y - \bar{y})^2 = 235654.2023$ 

Answer the following showing the details of your solutions:

a. Compute the correlation coefficient and interpret its meaning.

(4 points)

b. At the 2.5% level of significance, is there evidence that the sales of DVD's does not increase as the box office gross increases? (7 points)

c. Compute the percentage of variation in the DVD's sales that is explained by the variation in box office gross. (2 points)