Q1. (20 points) Let V be a vector space.

(a) Show that if W is a hyperspace in V, then there exists $g \in V^* \setminus \{0\}$ such that $W = N_g$ (the nullspace of g).

(b) Let V and W be finite dimensional vector spaces and $T: V \longrightarrow W$ a linear transformation. Show that

 $\operatorname{rank}(T^t) = \operatorname{rank}(T).$

Q2. (20 points) Let V be a finite dimensional vector space and T a diagonalizable linear operator on V.

(a) Show that the minimal polynomial of T is a product of distinct linear functions.

(b) Let c_1, \dots, c_k be the distinct eigenvalues of T and W_i be the eigenspace corresponding to c_i for $i = 1, \dots, k$. Show that there exists a set of orthogonal projections E_1, \dots, E_k such that:

(i) $E = c_1 E_1 + \dots + c_k E_k$

(ii) $I = E_1 + \dots + E_k$

(iii) $\operatorname{Range}(E_i) = W_i.$

Q3. (20 points) Consider the linear operator

 $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \ (x, y, z) \mapsto (6x + z, 3x - 2y, -8x - 3z).$

(a) Find the eigenvalues for T and the bases for the corresponding eigenspaces.

(b) Show that T is not diagonalizable over \mathbb{R} . Justify your answer.

(c) Show that T is triangulable over \mathbb{R} . Justify your answer.

Q4. (15 points) Consider the linear operator

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \ (x, y, z) \mapsto (3x + 2z, y, -x).$$

(a) Show that T is diagonalizable over \mathbb{R} .

(b) Find a matrix P such that $P^{-1}AP$ is diagonal, where A is the matrix representing T w.r.t. the standard basis.

Q5. (10 points) Let V be a finite dimensional vector space and T a linear operator on V with rank(T) = 1. Show that T is either nilpotent or diagonalizable.

Q6. (15 points) True of False? Justify your answer correcting the wrong one(s).

(a) Every linear operator on a vector space over $\mathbb C$ is triangulable.

(b) For every vector space V, we have $V \simeq V^{**}$.

(c) If T is a linear operator on the finite dimensional vector space $V = W_1 \oplus W_2$, where the subspaces W_1 , W_2 are invariant under T, then

 $\min(T) = \min(T_{|W_1}) \min(T_{|W_2}).$

GOOD LUCK