Name:.....ID#:....

Q:1 (25 points) Use Laplace transform to solve $u_{xx} = u_{tt} - xe^{-t}$, $0 < x < \infty$, t > 0

under the following conditions

$$u(0,t) = \cos t$$
, and $\lim_{x \to \infty} |u(x,t)| \sim x^n$ for some n and $t > 0$
 $u(x,0) = 1$ and $u_t(x,0) = 0$, for $0 < x < \infty$

Q:2 (25 points) Use Hankel transform to solve the wave equation

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} = \frac{1}{C^2} \frac{\partial^2 u}{\partial t^2}, \quad 0 < r < \infty, \quad t > 0,$$

subject to the initial conditions

$$u(r,0) = f(r)$$

$$u_t(r,0) = g(r).$$

Q.3: (25 points) Show that
$$\mathcal{H}\{f'(r)\} = \frac{\alpha}{2n} \left[(n-1)\tilde{f}_{n+1}(\alpha) - (n+1)\tilde{f}_{n-1}(\alpha) \right], n \ge 1$$

Q.4: (25 points) Solve using Mellin transform

$$x^2 \frac{\partial^2 u}{\partial x^2} + x \frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial y^2} = 0, \quad 0 \le x < \infty, \quad 0 < y < 1,$$

subject to the conditions

$$u(x,0) = 0$$

$$u(x,1) = \begin{cases} A, & 0 \le x \le 1\\ 0, & x > 1 \end{cases}$$

Q.5: (20 points) Find and sketch image of the vertical strip $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ under the mapping $w = f(z) = \sin z$. Check if f is conformal or not.

Q.6: (20 points) Find a harmonic function $\Phi(x, y)$ in the upper half of the z-plan which satisfy

$$\Phi(x,0) = G(x) = \begin{cases} A, & x > 0\\ 0, & x < 0 \end{cases}$$