King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 480 Final Exam – 2015–2016 (151)

Allowed Time: 180 minutes

Name:	
ID #:	
Section #:	Serial Number:

Instructions:

- 1. Write clearly and legibly. You may lose points for messy work.
- 2. Show all your work. No points for answers without justification.
- 3. Calculators and Mobiles are not allowed.

Written Problems

Question $\#$	Grade	Maximum Points
1		8
2		7
3		10
4		10
5		11
6		12
7		11
8		11
Total:		80

Q:1 (8 points) Convert the following fractional problem into general linear programming problem and then solve by **Two Phase Method**

$$\begin{array}{ll} Maximize \quad z = \frac{2x_1 + 3x_2}{x_1 + x_2 + 1}\\ \text{subject to} \\ & 2x_1 + x_2 \leq 3\\ & x_1 + 2x_2 \leq 3\\ & x_1, x_2 \geq 0. \end{array}$$

Q:2(7 points) Let $f \in c^1$. Prove that f is convex function over a convex set S if and only if

$$f(x) \ge f(\bar{x}) + \nabla f(\bar{x})(x - \bar{x})$$
 for all $x, \bar{x} \in S$.

 $\mathbf{Q:3}(10 \text{ points})$ Find the minimizer of

$$f(x_1, x_2) = \frac{1}{2}x^T \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix} x - x^T \begin{pmatrix} -1 \\ 1 \end{pmatrix}, x \in \mathbb{R}^2,$$

using the **Conjugate Direction Method** to perform 02 iterations with initial point (0,0) and congugate directions [1,0] and $[\frac{-3}{8},\frac{3}{4}]$.

Q:4(3 + 4 + 3 points) (a) Show directly from the definition whether $f(x_1, x_2) = x_1^2 + x_2^2 - x_1 x_2$ is convex function over $S = \{x : x_1 > 0, x_2 > 0\}$ or not ?

(b) Define feasible direction. State the first order necessary conditions of a real valued function f defined on a subset of \mathbb{R}^n .

(c) State the second order sufficient conditions for minimize f(x); subject to h(x) = 0, where $f: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R}^n \to \mathbb{R}^m$ are twice continuously differentiable functions.

Minimize
$$f(x_1, x_2) = x_2 - 2 + (x_1 - 1)^2$$

subject to
 $x_2 - x_1 = 1$
 $x_1 + x_2 \le 2$
and $u = 0$

for $\lambda = -1$ and $\mu = 0$.

Q:6(6+6 points) Consider the following nonlinear program:

Minimize $(x_1 - 2)^2 + (x_2 - 1)^2$, where x_1 and x_2 are real decesion variables.

(a) Starting from the point (0,1) perform next iteration of the **Newton's Method**. (b) Adding the constraints: $-x_1^2 + x_2 \ge 0; -x_1 - x_2 + 2 \ge 0; x_1 \ge 0; x_2 \ge 0$, solve the corresponding constrained problem by KKT conditions.

Q:7 (11 points) Apply Wolfe's Method for solving the quadratic programming problem: $Maximize \ z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$

Maximize $z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$ subject to $x_1 + 2x_2 \le 2$ $x_1, x_2 \ge 0.$ **Q:8** (11 points) Starting with $x_0 = (0, 1)$ find the next iteration in approximating the optimal solution of the following problem: $Minimize = 2x_1^2 + 2x_2^2 - 2x_1x_2 - 4x_1 - 6x_2$

 $\begin{array}{rll} Minimize &= 2x_1^2 \ + \ 2x_2^2 \ - \ 2x_1x_2 \ - \ 4x_1 \ - \ 6x_2\\ \text{subject to} & & \\ & x_1 + x_2 \ \leq 2\\ & x_1 + 5x_2 \leq 5\\ & & x_1, x_2 \geq 0 \\ \end{array}$ using Gradient Projection Method.