Department of Mathematics and Statistics, KFUPM Math-480 Semester-151 Major II

Maximum Marks: 40

Time Allowed: 90 minutes

Instructions:

Write clearly and legibly. You may lose points for messy work.Show all your work. No points for answers without justification.Calculators and Mobiles are not allowed.

Question $\#$	Grade	Maximum Points
1		11
2		08
3		07
4		07
5		07
Total:		40

(1)(11 points) Solve by Dual Simplex Method $\begin{array}{l} Minimize \quad z=2x_1+x_2\\ \text{subject to} \end{array}$ $\begin{array}{l} 3x_1+x_2 \ \geq 3\\ 4x_1+3x_2 \geq 6\\ x_1+2x_2 \leq 3\\ x_1,x_2 \geq 0. \end{array}$ $(2)(08 \ points)$ Use the complementary slackness conditions to find the optimal solution of the following problem:

 $\begin{array}{ll} \mbox{Minimize} & z = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5 \\ \mbox{subject to} & & \\ & x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ \geq 4 \\ & 2x_1 - 2x_2 + 3x_3 + x_4 + x_5 \geq 3 \\ & x_1, x_2, x_3, x_4, x_5 \geq 0. \end{array}$

 $(3)(07 \ points)$ Find the initial basic feasible solution of the following transportation problem by **Vogel's Approximation method.**

W.H					
F	W1	W2	W3	W4	Factory Capacity
F1	19	30	50	10	7
F2	70	30	40	60	9
F3	40	8	70	20	18
Req.		5 8	7	14	

 $(4)(07 \ points)$ Solve the following assignment problem.

	1	2	3	4	
Ι	12	30	20	15	
II	18	33	9	31	
III	44	25	24	21	
IV	23	30	28	14	

 $(5)(07 \ points)$ The following table gives the optimal solution of a LPP.

C_b	X _b	b	Х	:1	x2	x3	s1 s2	s3
5	x ₂	50/41	0	1	0	15/41	8/41	-10/41
4	x ₂	62/41	0	0	1	-6/41	5/41	4/41
3	x ₂	89/41	1	0	0	-2/41	-12/41	15/41
		,					,	,
		765/41	0	0	0	45/41	24/41	11/41

How much C_3 can be increased before the present basic solution will no longer be optimal. Also, find the change in the solution of objective function, if possible.