King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Sciences Math 425 - Graph Theory Semester –151 Dr. M. Z. Abu-Sbeih De

Final Exam

December 21, 2015

Student No.: _____

Name: _____

Show all your work. No credits for answers without justification. Write neatly and eligibly. You may loose points for messy work.

Problem 1 (10 points): Define each of the following

- (a) Strong tournament
- (b) Perfect matching
- (c) Outer planar graph
- (d) A *t*-tough graph
- (e) The line graph L(G) of a graph G

Problem 2 (16 points):

- a) State the Max-Flow Min-Cut Theorem
- b) The plane graph *G* has order 10 and size 20. The dual graph *G** has: Order ______ Size ______ Number of regions_____
- c) Draw a caterpillar T of order 7. Number the vertices randomly from 1 to 7, and then find the Prufer sequence of T.
- d) Draw a tree *T* whose Prufer sequence is (444555).

Problem 3 (25 points): Let $G = K_{r,r}$ where $r \ge 2$

- (a) Find the number of distinct labeling of G. (5 points)
- (b) Find the number of spanning trees of *G*. (5 points)
- (c) Is G vertex-transitive graph? Why? (5 points)
- (d) For what values of *r* the graph *G* is:

1)	Eulerian:		
ii)	Hamiltonian		
iii)	Planar		
iv)	1-tough		
v)	2-factorable		
(e) Find ea i)	ach of the following: $k(G) =$	_	
ii)	Connectivity $\kappa(G) =$	_	
iii)	Independence number $\alpha(G)$	= _	
iv)	The girth $g(G) =$	_	

v) Edge connectivity $\lambda(G) =$

Problem 4 (12 points): Prove each of the following

- (a) Prove that every *r*-regular bipartite graph, $r \ge 1$, is 1-factorable.
- (b) Show that the cube Q_n is 1-factorable for all $n \ge 1$.

Problem 5 (12 points):

- (a) Let G be a connected planar graph of order $n(n \ge 5)$ and size m whose shortest cycle length is 5. Prove that $m \le \frac{5}{3}(n-2)$.
- (b) Show that the Petersen graph is not planar.

Problem 6 (12 points):

- (a) Determine the crossing number of $K_{1,2,3}$
- (b) Show that the graph in the figure is not Hamiltonian.

Problem 7 (12 points):

- (a) Let G be a bipartite graph with bipartition (U, W) such that |U| = |W| = n ≥ 2. Let G' be the graph obtained from G by adding edges so that (U) is complete; i.e. (U) = K_n. Prove that if G' is Hamiltonian then G is Hamiltonian.
- (b) Prove that if G is Hamiltonian connected of order $n \ge 4$, then G is 3-connected.

Problem 8 (40 points): Let *G* be a graph of order $n \ge 5$ such that $d(v) \ge \frac{n-1}{2}$ for each vertex *v* of *G*. Either prove or disprove each of the following

(a) G is connected.

- (b) G is nonseparable.
- (c) G has a cycle of length at least $\frac{n+1}{2}$.
- (d) G is Hamiltonian.
- (e) G is Eulerian.
- (f) G is panconnected.
- (g) G has a perfect matching.
- (h) $\kappa(G) = \delta(G)$

