
	g Fahd University of Petroleum and M rtment of Mathematics and Statistics Math 425 - Graph Theory	
Exam III	Semester – 151 Dr. M. Z. Abu-Sbeih	December 7, 2015
Student No.:	. Name:	
	ur work. No credits for answers witho ly and eligibly. You may loose points j	

Problem 1 (25 points):

(a) Give an example of a planar graph which isomorphic to its dual graph.

(b) Find the number of distinct labeling of the graph in the figure.

(c) Give a maximal planar graph of order 6

Problem 3 (25 points): *Either prove or disprove each of the following statements. If a statement is true sketch the proof, and if it is false, give a counter example.*

(a) Every induced subgraph of the complete graph K_n is complete.

 $G = K_4 - e$

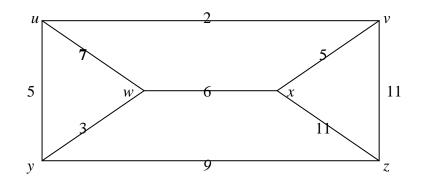
(b) If k is an odd integer and G is a k-regular graph of size m, then m is a multiple of k.

(c) If G_1 and G_2 are regular graphs, then the join $G_1 \vee G_2$ is regular.

(d) If the graph *G* has only two vertices of odd degree, then they must be connected by a path.

(e) Any connected graph has only one central vertex.

Problem 4 (29 points):


1) Let G is a graph of order 2n and size m. If $\delta(G) \ge n$ for each vertex v, prove that G is connected.

2) Prove that if G is an acyclic graph of order n and size m such that m = n - 1, then G is a tree.

Math 425 Sem 151

3) Let *G* be a connected graph of order $n \ (n \ge 3)$. Prove that there is an orientation of *G* in which no directed path has length 2 if and only if *G* is bipartite.

4) Apply Kruskal's algorithm to find a minimum spanning tree T in the weighted graph G. Show how this tree is constructed. Also find w(T).

