King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics MATH 321-01(Term 151) Exam I October 20, 2015

NAME:

ID #:

SHOW ALL WORK FOR FULL CREDIT

Question	Points	Score	
1	20		
2	12		
3	12		
4	15		
5	15		
6	13		
7	13		
Total	100		

Q1. Consider a smooth function f with the following values:

a) Write the polynomial interpolating f(x) at the first 3 nodes in Lagrange form.

b) Use divided differences to find the interpolating polynomial P(x) of all of the above data.

c) Assume all derivative of f are available, give an expression of the interpolating error f(x) - P(x) for some $x \in [-1, 2]$

d) Evaluate P(x) at x = 1.05 using: 3-digit chopping.

Q2. The equation $4x^2 - e^x - e^{-x} = 0$ has two positive solutions. Use two steps of the Newton's method to approximate one of these solutions starting with $p_0 = 5$. Use 4-digit rounding.

- Q3. (i) Derive the Secant method
 - (ii) In general, which is faster, Newton's method or the Secant method?

Q4. Find the root of $x - e^{-x} = 0$ on the interval [0.2, 1] accurate to within 10^{-3} using fixedpoint iteration method for an appropriate iteration function g(x) starting with $p_0 = 0.8$.

Estimate the number of iterations necessary to obtain the root and compare this theoretical estimate to the number actually needed.

Q5. Let f be defined at $a = x_0 < x_1 < x_2 < x_3 = b$.

Write the piecewise cubic spline S(x) indicating the different boundary conditions, the known constants and those need to be determined.

Q6. Use the appropriate three-point formula to determine f'(x) at the three given numbers

х	1.1	1.2	1.3
f(x)	9.025013	11.02318	13.46374

Q7. Let f(x) be a function of x and x_0, \ldots, x_n be n+1 distinct nodes. For $j = 0, \cdots, n$, let p_j be the polynomial interpolating f at the nodes x_0, x_1, \cdots, x_j . Let q be the polynomial interpolating f at the nodes x_1, \cdots, x_n . Show that:

$$p_n(x) = q(x) + \frac{x - x_n}{x_n - x_0}(q(x) - p_{n-1}(x))$$

Hint: compare the polynomials at the nodes.