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Department of Mathematics and Statistics 

MATH 302 

Final Exam  

2015-2016 (151) 

 
Thursday, December 24, 2015                                    Allowed Time: 3 Hours 

Name: ___________________________________________________________ 

ID Number:   _______________________   Serial Number: _______________ 
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Instructions: 

 

1. Write neatly and legibly. You may lose points for messy work. 

 

2. Show all your work. No points for answers without justification. 

 

3. Programmable Calculators and Mobiles are not allowed. 

 

4. Make sure that you have 10 different problems (10 pages + cover page). 

 

 

 

Problem No. Points Maximum Points 

1  15 

2  8 

3  22 

4  10 

5  11 

6  9 

7  10 

8  18 

9  17 

10  20 
Total:  140 
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Q1. Let 𝐀 = (
2 −2 1

−1 3 −1
2 −4 3

). Find a matrix P that diagonalizes A and the diagonal 

matrix D such that 𝐃 = 𝐏−1𝐀𝐏 

 

Solution: 

The characteristic equation of A is  

|𝐴 − 𝜆𝐼| = −𝜆3 + 8 𝜆2 − 13 𝜆 + 6 = −(𝜆 − 6)(𝜆 − 1)2 = 0. 

This gives the eigenvalues of A:  𝜆1 = 𝜆2 = 1  and 𝜆3 = 6.  

The corresponding eigenvectors are 

𝐾1 = (
−1
0
1

) ,  𝐾2 = (
2
1
0

)   𝑎𝑛𝑑  𝐾3 = (
1

−1
2

). 

Thus, a matrix P that diagonalizes A is given by  

𝑃 = (
−1 2 1
0 1 −1
1 0 2

) 

and the diagonal matrix D is  

𝐷 = 𝐏−1𝐀𝐏 = (
1 0 0
0 1 0
0 0 6

). 
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Q2. Let 𝐶 be the line segment from (1, 2, 0) to (−2, −1, 0).  Evaluate ∫ (𝑥 − 𝑦) 𝑑𝑦
𝐶

. 

 

Solution: 

Parametric equations for the line segment are 

𝑥 = 1 + (−2 − 1)𝑡 = 1 − 3𝑡, 

𝑦 = 2 + (−1 − 2)𝑡 = 2 − 3𝑡, 

                                                         𝑧 = 0 + (0 − 0)𝑡 = 0, 0 ≤ 𝑡 ≤ 1. 

 

We obtain  

              ∫ (𝑥 − 𝑦) 𝑑𝑦 =
𝐶

∫ 3 𝑑𝑡
1

0

= 3 
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Q3. Let D be the region bounded by the paraboloid  𝑧 = 𝑥2 + 𝑦2 + 1 and the   plane 

 𝑧 − 2𝑥 = 4. Use the divergence theorem to find the outward flux ∬ (𝐅 ∙ 𝐧) 𝑑𝑆
𝑆

 of the 

vector field   𝐅 = 𝑥 𝐢 + 𝑦  𝐣 −  𝐤,  where S is the boundary of D.    

Solution: 

In Cartesian coordinates the region D is given by 

𝐷 = {
(𝑥, 𝑦, 𝑧)| − 1 ≤ 𝑥 ≤ 3, −√3 − 𝑥2 + 2𝑥 ≤ 𝑦 ≤ √3 − 𝑥2 + 2𝑥,

 1 + 𝑥2 + 𝑦2 ≤ 𝑧 ≤ 4 + 2𝑥
}.                      

The divergence of F is 

div 𝐹 = 2. 

By the divergence theorem, 

∬ (𝐅 ∙ 𝐧) 𝑑𝑆
𝑆

       = ∭ div 𝐹 𝑑𝑉
𝐷

= 2 ∭  𝑑𝑉
𝐷

 

= 2 ∫ ∫ (3 + 2𝑥 − 𝑥2 − 𝑦2)𝑑𝑦𝑑𝑥
√3−𝑥2+2𝑥

−√3−𝑥2+2𝑥

3

−1

 

= 2 ∫ [(3 + 2𝑥 − 𝑥2)𝑦 −
1

3
𝑦3]

−√3−𝑥2+2𝑥

√3−𝑥2+2𝑥

  𝑑𝑥
3

−1

 

=
8

3
∫ (3 − 𝑥2 + 2𝑥)

3
2  𝑑𝑥

3

−1

 

=
8

3
∫ [4 − (𝑥 − 1)2]

3

2  𝑑𝑥
3

−1
    (let 𝑠 = 𝑥 − 1) 

=
8

3
∫ [4 − 𝑠2]

3

2  𝑑𝑠
2

−2
                (let 𝑠 = 2 sin 𝜃) 

=
8

3
∫ 16 𝑐𝑜𝑠4𝜃  𝑑𝜃

𝜋
2

−
𝜋
2

=
8

3
∫ 4(1 + 2𝑐𝑜𝑠2𝜃 +  𝑐𝑜𝑠22𝜃 )  𝑑𝜃

𝜋
2

−
𝜋
2

 

=
32

3
∫ (

3

2
+ 2𝑐𝑜𝑠2𝜃 +

1

2
𝑐𝑜𝑠4𝜃 )   𝑑𝜃

𝜋
2

−
𝜋
2

=
64

3
[
3

2
𝜃 + sin 2𝜃 +

1

8
sin 4𝜃]

0

𝜋
2

= 16𝜋. 
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Another solution: 

In Cartesian coordinates the region D is given by 

𝐷 = {(𝑥, 𝑦, 𝑧)|(𝑥 − 1)2 + 𝑦2 = 4, 1 + 𝑥2 + 𝑦2 ≤ 𝑧 ≤ 4 + 2𝑥}.                      

The divergence of F is 

div 𝐹 = 2. 

By the divergence theorem, 

∬ (𝐅 ∙ 𝐧) 𝑑𝑆
𝑆

       = ∭ div 𝐹 𝑑𝑉
𝐷

= 2 ∭  𝑑𝑉
𝐷

 

= 2 ∬ (3 + 2𝑥 − 𝑥2 − 𝑦2)𝑑𝐴
𝑅

  where  𝑅 = {(𝑥, 𝑦)|(𝑥 − 1)2 + 𝑦2 = 4}. 

let 𝑠 = 𝑥 − 1, then the integral 

= 2 ∬ (4 − 𝑠2 − 𝑦2)𝑑𝐴
𝑀

       where  𝑀 = {(𝑠, 𝑦)|𝑠2 + 𝑦2 = 4}. 

= 2 ∫ ∫(4 − 𝑟2)𝑟𝑑𝑟𝑑𝜃

2

0

2𝜋

0

 

= 4𝜋 ∫(4𝑟 − 𝑟3)𝑑𝑟

2

0

 

= 4𝜋 [2𝑟2 −
𝑟4

4
]

0

2

 

= 16𝜋. 
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Q4. Let 𝑓(𝑧) = |𝑧|2 + 𝑖. Show that  𝑓(𝑧) is differentiable only at 𝑧0 = 0 and find 𝑓′(0). 

 

Solution: 

 

Let 𝑧 = 𝑥 + 𝑖 𝑦. We have 

𝑓(𝑧) = |𝑧|2 + 𝑖 = 𝑥2 + 𝑦2 + 𝑖. 

Put 𝑢 = 𝑥2 + 𝑦2 and 𝑣 = 1. We obtain 

𝜕𝑢

𝜕𝑥
= 2𝑥,     

𝜕𝑣

𝜕𝑦
= 0, 

𝜕𝑢

𝜕𝑦
= 2𝑦,      

𝜕𝑣

𝜕𝑥
= 0, 

Since the Cauchy-Riemann equations hold only at point (0,0), then 𝑓(𝑧) is not 

differentiable at any 𝑧 ≠ 0. 

Moreover, since 𝑢, 𝑣,
𝜕𝑢

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
,

𝜕𝑣

𝜕𝑥
,

𝜕𝑣

𝜕𝑦
  are continuous in a neighborhood about a point 

(0,0), then 𝑓(𝑧) is differentiable at 𝑧 = 0 and 𝑓′(0) =
𝜕𝑢

𝜕𝑥
(0,0) + 𝑖

𝜕𝑣

𝜕𝑥
(0,0) = 0. 
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Q5. Find all complex numbers 𝑧 satisfying cos 𝑧 = 2. 

 

Solution: 

𝑒𝑖𝑧 + 𝑒−𝑖𝑧

2
= 2 

𝑒𝑖𝑧 + 𝑒−𝑖𝑧 − 4 = 0 

(𝑒𝑖𝑧)
2

− 4𝑒𝑖𝑧 + 1 = 0 

𝑒𝑖𝑧 =
4 ± √16 − 4

2
= 2 ± √3 

𝑖𝑧 = 𝑙𝑛(2 ± √3) 

𝑖𝑧 = 𝑙𝑜𝑔𝑒|2 ± √3| + 𝑖(0 + 2𝑛𝜋),       𝑛 = 0, ±1, ±2, … 

𝑧 = 2𝑛𝜋−𝑖 𝑙𝑜𝑔𝑒(2 ± √3),       𝑛 = 0, ±1, ±2, … 
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Q6. Find  ∫
sin|𝑧|

𝑧
 𝑑𝑧,

𝐶
 where 𝐶 is the circular arc (in the first quadrant) along |𝑧| = 2 from 

𝑧 = 2 to 𝑧 = 2 𝑖. 

Solution: 

 

On curve C, we have 𝑧 = 2(cos 𝑡 +  𝑖 sin 𝑡) = 2𝑒𝑖𝑡 , 0 ≤ 𝑡 ≤ 𝜋/2 and 𝑑𝑧 = 2𝑖𝑒𝑖𝑡𝑑𝑡.  

Thus, 

∫
sin|𝑧|

𝑧
 𝑑𝑧

𝐶

 

= ∫
sin 2
2𝑒𝑖𝑡

 2𝑖𝑒𝑖𝑡𝑑𝑡                                

𝜋
2

0

 

= 𝑖 sin 2 ∫ 𝑑𝑡

𝜋
2

0

 

= 𝑖 
𝜋

2
sin 2. 
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Q7. Let 𝑓(𝑧) = 𝑧5sin (
1

𝑧2). 

(a) Expand 𝑓(𝑧) as Laurent series valid for 0 < |𝑧|. 

Solution: 

We want all powers of 𝑧 in the series. We obtain 

𝑓(𝑧) = 𝑧5sin (
1

𝑧2
)   

=  𝑧5 ∑
(−1)

𝑘

(2𝑘 + 1)!
(

1

𝑧2
)

2𝑘+1∞

𝑘=0

    

= ∑
(−1)

𝑘

(2𝑘 + 1)!
𝑧3−4𝑘

∞

𝑘=0

 

= 𝑧3 −
1
3!

1
𝑧

+
1
5!

1

𝑧5
− ⋯ 

The series valid for the annular domain 0 < |𝑧|. 

(b) Evaluate ∮ 𝑓(𝑧)
𝐶

𝑑𝑧 where 𝐶 is a positively oriented rectangle containing zero. 

 

Solution: 

Since the residue at 𝑧 = 0 of the given function is  𝑎−1 = −
1

6
, then  

∮ 𝑓(𝑧)
𝐶

𝑑𝑧 = 2𝜋𝑖 Res (𝑓(𝑧), 0)=−
1

3
𝜋𝑖. 
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Q8. Use the Cauchy integral formula (for higher derivatives) to evaluate the integral 

∮ (
𝑧3−2

𝑧3(𝑧−1)
− 𝑧3 cos 𝑧) 𝑑𝑧

𝐶
  where 𝐶 is the positively oriented circle 

 |𝑧 − 1| = 2. 

Solution: 

Let  𝐼1 = ∮
𝑧3−2

𝑧3(𝑧−1)
 𝑑𝑧

𝐶
    𝑎𝑛𝑑   𝐼2 = ∮ 𝑧3 𝑐𝑜𝑠 𝑧  𝑑𝑧.

𝐶
 

Since 𝑧3 𝑐𝑜𝑠 𝑧 is an entire function, then 𝐼2 = 0 by Cauchy theorem. 

Since the two singularities 𝑧 = 0 and 𝑧 = 1 are lying within C, then we can use the 

deformation theorem as follows: 

𝐼1 = ∮
𝑧3 − 2

𝑧3(𝑧 − 1)
 𝑑𝑧 + ∮

𝑧3 − 2

𝑧3(𝑧 − 1)
 𝑑𝑧

𝐶2𝐶1

 

where  𝐶1: |𝑧| = 0.1 and 𝐶2: |𝑧 − 1| = 0.1. 

Moreover, one can rewrite the integral 𝐼1 as follows: 

𝐼1 = ∮
𝑓1(𝑧)

𝑧3
 𝑑𝑧 + ∮

𝑓2(𝑧)

𝑧 − 1
 𝑑𝑧

𝐶2𝐶1

 

Where 𝑓1(𝑧) =
𝑧3−2

𝑧−1
 is analytic on 𝐶1 and 𝑓2(𝑧) =

𝑧3−2

𝑧3  is analytic on 𝐶2. 

Thus, we have   𝑓1
(2)(𝑧) =

2𝑧3−6𝑧2+6𝑧−4

(𝑧−1)3 .  Using the Cauchy's integral formula, we obtain 

𝐼1 =
2𝜋𝑖

2!
𝑓1

(2)(0) + 2𝜋𝑖𝑓2(1) = 4𝜋𝑖 − 2𝜋𝑖 = 2𝜋𝑖 

Hence, 

∮ (
𝑧3 − 2

𝑧3(𝑧 − 1)
− 𝑧3 𝑐𝑜𝑠 𝑧) 𝑑𝑧

𝐶

= 𝐼1 + 𝐼2 = 2𝜋𝑖 + 0 = 2𝜋𝑖. 
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Q9. Use the residue theorem to evaluate ∮
sin 𝑧

𝑧2(𝑧+𝑖)2𝐶
 𝑑𝑧 where 𝐶 is the positively 

oriented circle |𝑧| = 3. 

Solution: 

Observe that 𝑓(𝑧) =
𝑠𝑖𝑛 𝑧

𝑧2(𝑧+𝑖)2  has two singularities 𝑧 = 0 and 𝑧 = −𝑖 and both of them lie 

within C. Thus, 

𝐼 = ∮
𝑠𝑖𝑛 𝑧

𝑧2(𝑧 + 𝑖)2
𝐶

 𝑑𝑧 = 2𝜋𝑖 [𝑅𝑒𝑠(𝑓(𝑧), 0) + 𝑅𝑒𝑠(𝑓(𝑧), −𝑖)]                                          

Since 𝑧 = 0 is a zero of the denominator of order 2 and zero of the numerator of order 1, 

then 𝑧 = 0 is a simple pole and  

𝑅𝑒𝑠(𝑓(𝑧), 0) = 𝑙𝑖𝑚
𝑧→0

𝑧𝑓(𝑧) = 𝑙𝑖𝑚
𝑧→0

𝑠𝑖𝑛 𝑧

𝑧(𝑧 + 𝑖)2
= −1 

Since 𝑧 = −𝑖 is a zero of the denominator of order 2 and is not a zero of the numerator, 

then 𝑧 = −𝑖 is a double pole and  

𝑅𝑒𝑠(𝑓(𝑧), 0)= 𝑙𝑖𝑚
𝑧→−𝑖

𝑑

𝑑𝑧
((𝑧 + 𝑖)2𝑓(𝑧)) 

= 𝑙𝑖𝑚
𝑧→−𝑖

𝑑

𝑑𝑧
(

𝑠𝑖𝑛 𝑧

𝑧2 )= 𝑙𝑖𝑚
𝑧→−𝑖

𝑧2 𝑐𝑜𝑠 𝑧−2 𝑧 𝑠𝑖𝑛 𝑧 

𝑧4 =−𝑐𝑜𝑠 𝑖 − 2 𝑖 𝑠𝑖𝑛 𝑖  

Hence, 

 𝐼 = −1 − 𝑐𝑜𝑠 𝑖 − 2 𝑖 𝑠𝑖𝑛 𝑖. 
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Q10. Evaluate the Cauchy principal value of ∫
1

𝑥4 +16

∞

−∞
𝑑𝑥. 

Solution: 

Let 𝑓(𝑧) =
1

𝑧4 +16
 .  

Since 𝑧4 +16 = (𝑧 − 𝑧0)(𝑧 − 𝑧1)(𝑧 − 𝑧2)(𝑧 − 𝑧3)  where 𝑧𝑘 = 2𝑒
𝜋𝑖+2𝑘𝜋𝑖

4 , 𝑘 = 0,1,2,3. 

We let 𝐶 be the closed contour consisting of the interval [−𝑅, 𝑅] on the x-axis and the 

semi-circle 𝐶𝑅 of radius 𝑅 > 2  given by 𝑧 = 𝑅𝑒𝑖𝑡 , 𝑡 = 0 … 𝜋.  

Then 

∮ 𝑓(𝑧)
𝐶

 𝑑𝑧 = ∫
1

𝑥4 +16

𝑅

−𝑅

𝑑𝑥 + ∫
1

𝑧4 +16
  𝑑𝑧,

𝐶𝑅

 

Since degree 𝑧4 +16 minus degree 1 ≥ 2, then 𝑙𝑖𝑚
𝑅→∞

∫
1

𝑧4 +16
  𝑑𝑧 = 0

𝐶𝑅
 and so 

𝑃. 𝑉. ∫
1

𝑥4 +16

∞

−∞
𝑑𝑥=2𝜋𝑖 [𝑅𝑒𝑠(𝑓(𝑧), 𝑧0) + 𝑅𝑒𝑠(𝑓(𝑧), 𝑧1)]. 

Since 𝑧 = 𝑧0 and 𝑧 = 𝑧1 are simple poles, then 

𝑅𝑒𝑠(𝑓(𝑧), 𝑧0) =
1

4𝑧0
3

=
1

32
𝑒−

3𝜋𝑖
4 =

1

32
(−

1

√2
− 𝑖

1

√2
) 

𝑅𝑒𝑠(𝑓(𝑧), 𝑧1) =
1

4𝑧1
3

=
1

32
𝑒−

9𝜋𝑖
4 =

1

32
𝑒−

𝜋𝑖
4 =

1

32
(

1

√2
− 𝑖

1

√2
) 

Hence,  

𝑃. 𝑉. ∫
1

𝑥4 +16

∞

−∞
𝑑𝑥=2√2𝜋 . 

 

 

 

 

 


