Introduction to Linear Algebra (Math 280) Syllabus

Term 151, Year 2015/16

INSTRUCTOR INFORMATION

Email & Website

Dr. Mohammed Alshahrani mshahrani@kfupm.edu.sa Building 5, Ro http://faculty.kfupm.edu.sa/MATH/mshahrani/ Office hours:

Office Location & Hours

Building 5, Room 201-1, Tel: 013-860-7748 Office hours: Sundays, Tuesdays & Thursdays 09:00-09:50 AM

GENERAL INFORMATION

DESCRIPTION

Instructor

MATRICES AND SYSTEMS OF LINEAR EQUATIONS. VECTOR SPACES AND SUBSPACES. LINEAR INDEPENDENCE. BASIS AND DIMENSION. INNER PRODUCT SPACES. THE GRAM-SCHMIDT PROCESS. LINEAR TRANSFORMATIONS. DETERMINANTS. DIAGONALIZATION. REAL QUADRATIC FORMS.

LEARNING OUTCOMES

Upon successful completion of this course, a student should be able to:

- Use elementary row operation to solve systems of linear equations and decide whether a square matrix is singular or nonsingular.
- Express a nonsingular matrix as a product of elementary operations.
- Evaluate the determinant of a matrix using cofactor expansion or elementary row (column) operations.
- Find the inverse of a nonsingular matrix using its adjoint and solve some systems by Cramer's method.
- Construct a basis for a given vector space and evaluate its dimension.
- Represent a linear transformation by a matrix.
- Construct an orthonormal set using the Gram-Schmidt orthogonalization process
- Determine the eigenvalues and eigenspaces of a square matrix.
- Decide whether a given square matrix is diagonalizable or not.
- Diagonalize orthogonally a real symmetric matrix.

ATTENDANCE:

Attendance is a University Requirement. A DN grade will be awarded to any student who misses 9 classes without excuse.

ACADEMIC INTEGRITY:

All KFUPM policies regarding ethics apply to this course.

GRADING POLICY

EVALUATION				
Activity	Points			
Homework	100			
Computer Assignment	100			
Exam 1	100			
Exam 2	100			
Final	200			
Total	600			

COURSE MATERIALS

Required Text

Linear Algebra with Applications, 8th Edition (Pearson New International Edition), by Steve Leon, 2014.

RESOURCES:

This course will be supplemented by the following websites

- My personal website: http://faculty.kfupm.edu.sa/MATH/mshahrani/
- BlackBoard: (Version 9.1 on <u>https://blackboard.kfupm.edu.sa/</u>)
 Syllabus, Lecture Notes, Homework Problem Sets, Grades, Attendance, etc

COURSE SCHEDULE

Wee	k Topic	Section
1	Systems of linear equations Row echelon form	1.1 1.2
2	Matrix arithmetic Matrix algebra	1.3 1.4
3	Elementary matrices	1.5
4	The determinant of a matrix Properties of determinants Additional topics and applications	2.1 2.2 2.3
5	Vector space: Definition and examples Subspaces	3.1 3.2
6	Linear independence Basis and dimension	3.3 3.4
7	Change of basis Row space and column space	3.5 3.6
8	Linear transformations Matrix representations of linear transformations	4.1 4.2
9	Similarity The scalar product in $ {\mathbb R}^n $	4.3 5.1
10	Orthogonal subspaces Inner product spaces	5.2 5.4
11	Orthonormal sets	5.5
12	The Gram-Schmidt orthogonalization process Orhogonal polynomials	5.6 5.7
13	Eigenvalues and eigenvectors	6.1
14	Diagonalization	6.3
15	Quadratic forms	6.6

EVENTS

Event	Date & Time		Notes	
ld Adha Holiday	y Sunday September 20, 2015 - Monday September 28, 2015.			
Exam 1	Thursday, October 8, 2015	(07:00-09:00PM)	Material: Sections 1.1 - 3.2	
Exam 2	Thursday, November 5, 2015	(07:00-09:00PM)	Material: Sections 3.2 - 5.1	
Final	Monday, December 28, 2015	(08:00-11:00AM)	Material: Comprehensive	