King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math-280, Term-151 Final Exam, Time Allowed: 3 hours

Name:

ID:

SHOW ALL YOUR WORK

Question	Score	Total Mark
1		20
2		20
3		20
4		20
5		20
6		20
7		20
8		20
9		20
10		20
TOTAL		200

Question 1: A linear operator L is defined on P_3 as

L(p(x)) = p(0)x + p(1). Find

- a) the kernel of L.
- b) the range of L.

- Question 2: Let $L: V \to W$ be a linear transformation from the vector space V to the vector space W.
 - a) Show that L is one-to-one if and only if $ker(L) = \{0\}$.
 - b) Is the linear transformation $L : \mathbb{R}^3 \to \mathbb{R}^3$ defined as $L(x) = (x_1, 0, 2x_3)^T$, for all $x = (x_1, x_2, x_3)^T \in \mathbb{R}^3$

one-to-one. Explain.

Question 3: Let *L* be a linear operator defined on \mathbb{R}^2 as follows

$$L(x) = \begin{bmatrix} -x_1 \\ x_2 \end{bmatrix}$$
, for all $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$.

If $B_1 = \{u_1, u_2\}$ and $B_2 = \{v_1, v_2\}$ are two ordered bases for \mathbb{R}^2 , with

$$u_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad u_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \qquad v_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \qquad v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

then find

- a) the transition matrix S corresponding to the change of basis from B_1 to B_2 .
- b) the matrix A representing L with respect to B_2 .

Question 4: Let

$$S = \left\{ x \in \mathbb{R}^{4} : x = \alpha \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \\ 3 \\ -2 \end{bmatrix} \right\}$$

Find a basis for S^{\perp} .

Question 5: Define an inner product on P_5 as follows

$$\langle p,q \rangle = \sum_{i=1}^{5} p(x_i)q(x_i)$$

where $p,q \in P_5$ and $x_i = \frac{i-3}{2}$, i = 1, 2, 3, 4, 5. Compute

a) $\langle x, x^2 \rangle$

b) The distance between x and x^2 .

Question 6: Let $\{x_1, x_2, x_3\}$ be an orthonormal basis for an inner product space

V and let

 $u = x_1 + 2x_2 + 2x_3$ and $v = x_1 + 7x_3$

Find the value of the following

- a) $\langle u, v \rangle$
- b) ||u|| and ||v||
- c) The angle θ between u and v.

Question 7: Let $A = \begin{bmatrix} 3 & -1 \\ 4 & 2 \\ 0 & 2 \end{bmatrix}$.

- a) Use Gram-Schmidt process to find an orthonormal basis for the column space of *A*.
- b) Factor *A* into a product *QR*, where *Q* has an orthonormal set of column vectors and *R* is upper triangular.

Question 8: Let A be an $n \times n$ matrix and λ be an eigenvalue of A.

- a) Show that $1/\lambda$ is an eigenvalue of A^{-1} .
- b) If $A^2 = A$, show that λ must point either 0 or 1.

Question 9: Let $A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 3 \\ 1 & 1 & -1 \end{bmatrix}$.

- a) Factor A into a product XDX^{-1} , where D is diagonal.
- b) Using XDX^{-1} , find A^{6} .

Question 10: Let $f(x, y) = \sin x + y^3 + 3xy + 2x - 3y$ and consider the point

- P(0,-1).
 - a) Show that P is a stationary point of f.
 - b) Determine whether *P* is a local minimum, local maximum, or a saddle point.