King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math-280, Term-151 Major Exam 2, Time Allowed: 2 hours

Name:

ID:

SHOW ALL YOUR WORK

Question	Score	Total Mark
1		14
2		14
3		14
4		18
5		20
6		20
TOTAL		100

Question 1: Let V be a vector space. Show that

- a) the element **0** in *V* is unique.
- b) $\alpha \mathbf{0} = \mathbf{0}$ for each scalar α .

Question 2: Let S_1 and S_2 be two subspaces of a vector space V. Determine whether the following sets are subspaces of V.

a)
$$S_1 \cap S_2$$

b) $S_1 \setminus S_2 = \{ v \in S_1 : v \notin S_2 \}.$

Question 3: Check for linear independence

- a) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$ in $\mathbb{R}^{2 \times 2}$.
- b) $x_2 x_1$, $x_3 x_2$, $x_3 x_1$ in \mathbb{R}^n where x_1, x_2, x_3 are linearly independent vectors in \mathbb{R}^n .

Question 4:

- a) Find a basis for the subspace *S* of \mathbb{R}^4 that consists of all vectors of the form $(a-2b,a-b-3c,b,a)^T$, where $a,b,c \in \mathbb{R}$. What is the dimension of *S*?
- b) In $C[-\pi,\pi]$, what is the dimension of $\text{Span}(1,\cos x,\sin^2(\frac{x}{2}))$.

Question 5: Let $\mathbf{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{u}_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$.

- a) Show that the set $B_1 = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ forms a basis for \mathbb{R}^3 .
- b) Find the transition matrix from the $B_2 = \{e_1, e_2, e_3\}$ to B_1 .
- c) Using part b) find $\begin{bmatrix} v \end{bmatrix}_{B_1}$ where $v = (3, 2, -5)^T$.

Question 6: For the matrix

$$A = \begin{pmatrix} 3 & 1 & -3 & 4 \\ -1 & 2 & 1 & -2 \\ -3 & 8 & -4 & 2 \end{pmatrix}$$

find

a) a basis for

- i. the row space of *A*,
- ii. the column space of A, and

iii. the null space of A.

b) rank(A), nullity(A).