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Section Number: Serial Number:
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Instructions:

1. Calculators and Mobile Phones are not allowed.

2. Write legibly.

3. For written questions, show all work. No points for answers without justification.

4. Make sure that you have 11 pages of problems (Total of 12 Problems)
(There are 6 multiple choice and 6 written questions).
Multiple choice questions carry 7 marks each.

Question Points Maximum

Number Points
1 7

2 7

3 7

4 7

5 7

6 7

7 14

8 18

9 14

10 14

11 14

12 24

Total 140
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1. The interval of validity for the IVP (x2 − 4) y′ + 3y = ln |25− 5x|, y(3) = 2.5 is:

a) (2 < x < 5)

b) (−2 < x < 2)

c) (−∞ < x < −2)

d) (5 < x <∞)

e) (2 < x <∞)

2. A tea cup is taken out from an oven at 100◦C. For tea to cool, it is left at a
room temperature of 30◦C. After 20 minutes, the temperature of tea is 80◦C.
The time tea will take to cool down to 40◦C is:

a) t =
20 ln(1/7)

ln(5/7)

b) t =
15 ln(1/7)

ln(5/3)

c) t =
20 ln(1/7)

ln(3/7)

d) t =
15 ln(3/7)

ln(5/7)

e) t =
10 ln(4/7)

ln(6/7)
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3. The general solution of the first order linear differential equation

(x2 + 1) y′ + 4xy =
2x

x2 + 1
is:

a) y =
1

(x2 + 1)2
[x2 + C]

b) y =
1

(x2 + 1)
[x2 + C]

c) y =
−1

(x2 + 1)
[x2 + C]

d) y =
1

(x2 + 1)2
[2x2 + C]

e) y =
1

x+ 1
ln |x2 + 1|+ C

4. A family of solutions of (1 + x2 y + cosx + (1/2) ln y) dx + [(x/2y) + ey + 3 +
(x3/3)] dy = 0, with y > 0 is:

a) f(x, y) = (x/2) ln y + ey + 3y + (x3/3) y + x+ sinx = C

b) f(x, y) = (x/2) ln y + 2ey + 3y + (x3/3) y + x+ sinx = C

c) f(x, y) = x ln y + ey + 3y + (x3/3) y + x+ sinx = C

d) f(x, y) = (x/2) ln y + 4ey + 6y + (x3/3) y + x+ sinx = C

e) f(x, y) = x ln y + ey + 3 ln y + (x3/3) y + x+ sinx = C



3/11 Math260.151, Final Exam

5. Using an appropriate substitution, we find that a family of solutions of
y′ = tan2 (x+ y) is given by:

a) y = C + x− sin(x+ y) cos(x+ y)

b) y = C − x− sin(x+ y) cos(x+ y)

c) y = C + x+ sin(x+ y) cos(x+ y)

d) y = C − 2x− sin(x+ y) cos(x+ y)

e) y = C + 2x+ sin(x+ y) cos(x+ y)

6. If y is a solution of the IVP x y′ e(y/x) = x + y ey/x , y(1) = 1, then y(e) is equal
to:

a) e ln (e+ 1)

b) e+ ln (e+ 1)

c) e ln(e− 1)

d) e− ln (e− 1)

e) e+ ln (e− 1)
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7. (14 points) Use method of undetermined coefficients to find particular solution
of y′′ + 4y = 2 cos 2x+ ex + 1.
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8. (18 points) Determine whether or not the matrix A =

 3 −3 1
2 −2 1
0 0 1

 is diag-

onalizable. If it is diagonalizable, find a diagonalizing matrix P and a diagonal
matrix D. Use your results to calculate A50.
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9. (14 points) Find general solution of the system

X ′(t) =

 −3 0 −4
−1 −1 −1
1 0 1

 X(t).

The egienvalues of the matrix are λ = −1 (multiplicity 3).
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10. (14 points) Given that y1 = x and y2 = ex are solutions of the DE
(1− x) y′′ + xy′ − y = 0, use variation of parameters method to find a
particular solution of (1− x) y′′ + xy′ − y = 2(x− 1)2 e−x.
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11. (14 points) Solve the first order system

X ′(t) =

 1 −1 2
−1 1 0
−1 0 1

 X(t)
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12. Consider the homogeneous system X ′(t) =

 1 0 1
1 1 0
−2 0 −1

 X(t).

(a)(9 points) The vectors X1 =

 cos t
−1

2
cos t+

1

2
sin t

− cos t− sin t

 , X2 =

 0
et

0

 and

X3 =

 sin t
−1

2
sin t− 1

2
cos t

− sin t+ cos t

 are solutions of the system. Choose any two vectors

to verify that they are solutions of the given system.
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(b) (6 points) Determine whether the solutions in part (a) are
linearly independent.

(c) (3 points) Write general solution of the given system.
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(d) (6 points) Solve the IVP X ′(t) =

 1 0 1
1 1 0
−2 0 −1

 X(t), with

X(0) =

 x1 (0)
x2 (0)
x3 (0)

 =

 1
0
1

 .


