King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

MATH 260 - Exam II - Term 151

Duration: 120 minutes

Name:	ID Number:
Section Number:	Serial Number:
Class Time:	Instructor's Name:

Instructions:

- 1. Calculators and Mobile Phones are not allowed.
- 2. Write legibly.
- 3. Show all your work. No points for answers without justification.
- 4. Make sure that you have 6 pages of problems (Total of 6 Problems)

Question	Points	Maximum
Number		Points
1		14
2		22
3		16
4		24
5		12
6		12
Total		100

	2	-4	3	
2. (a) (12 points) Evaluate the determinant given by	3	1	2	.
	1	4	-1	

(b) (10 points) Use Cramer's rule to solve the system,

$$3x + 4y = -8$$
$$2x + 3y = -7$$

3. (16 points) For each of the given subsets of \mathbb{R}^3 , determine whether it is a subspace of \mathbb{R}^3 or not. Justify your answer.

(a) $S = \{(x, y, z) | x + 2y + z = 2\}$

(b) $S = \{(x, y, z) | x + y = 3z\}$

4. (12 points) (a) Determine whether the vectors $\underline{u} = (1, 0, -2), \underline{v} = (3, 2, -4)$ and $\underline{w} = (-3, 5, 1)$ are linearly independent or not?

(b) (12 points) Do the vectors $\underline{u}, \underline{v}$ and \underline{w} in part(a) span \mathbb{R}^3 ? Justify your answer.

5. (12 points) Express $\underline{t} = (1, -2, 1)$ as a linear combination of $\underline{u} = (1, 2, -1), \ \underline{v} = (-3, 2, -1)$ and $\underline{w} = (2, 0, 0).$

- 6. (12 points) Find a basis for the solution space of the given homogeneous system. Determine dimension of this solution space.
 - $\begin{array}{rl} x_1 2x_2 & -x_4 + 3x_5 & = 0, \\ x_1 2x_2 + x_3 + x_4 + x_5 & = 0, \\ x_3 + 2x_4 2x_5 & = 0. \end{array}$