KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 232: PROJECT 2, SEMESTER (151),

Name :

ID :

Exercise 1. Let A, B be two finite sets such that |A| = n and |B| = m.

(1) Using Mathematical Induction on n, show that the number of functions from A into B is m^n .

(2) Deduce from (1), that the number of subsets of A is 2^n (assign to each subset S of A its characteristic function χ_s)

(3) Show that the number of subsets of A of size $p \le n$ is $\binom{n}{p}$ (use induction on n).

Exercise 2. Let $f : \mathbb{N} \longrightarrow \mathbb{Z}$ be the function defined by $f(n) = \frac{(-1)^n (2n-1) + 1}{4}$. Show that f is a bijection. Exercise 3. We define

$$\begin{array}{rcccc} g: \mathbb{N} \times \mathbb{N} & \longrightarrow & \mathbb{N} \\ (m,n) & \longmapsto & 2^{m-1}(2n-1) \end{array}$$

Show that g is a bijection.

Exercise 4 (Construction of \mathbb{Z}). Let $\mathbb{N} = \{0, 1, 5, 3, ...\}$ be the set of all natural numbers. We define the relation R on the cartesian product $\mathbb{N} \times \mathbb{N}$ by:

$$(x, y)R(a, b) \iff x + b = y + a.$$

(i) Show that R is an equivalence relation.

(ii) If $x, y \in \mathbb{N}$, then we denote by $\overline{(x, y)}$ the equivalence class of (x, y) with respect to the equivalence relation R. Define the addition \oplus on the quotient set $\mathcal{Z} := (\mathbb{N} \times \mathbb{N})/R$ by:

$$\overline{(x,y)} \oplus \overline{(a,b)} = \overline{(x+a,y+b)},$$

and the multiplication \otimes by:

$$\overline{(x,y)} \otimes \overline{(a,b)} = \overline{(xa+yb,xb+ya)}.$$

For $x \in \mathbb{N}$, we denote by $[-x] = \overline{(0,x)}$ and $[x] = \overline{(x,0)}$.

- Explain why [-x] ⊕ [-y] = [-(x + y)]?
 Explain why [-x] ⊗ [-y] = [xy]?

(*iii*) Show that

$$\mathcal{Z} = \{ [-x] : x \in \mathbb{N} \} \cup \{ [x] : x \in \mathbb{N} \}.$$

(iv) We define the relation \preceq on $\mathcal Z$ by:

 $\overline{(x,y)} \preceq \overline{(a,b)} \iff$ there exists $k \in \mathbb{N}$ such that y + a = x + b + k. Show that \preceq is a total ordering on \mathcal{Z} and that we have $\ldots \preceq [-3] \preceq [-2] \preceq [-1] \preceq [0] \preceq [1] \preceq [2] \preceq [3] \preceq \ldots$ (v) Show that if $\overline{(c,d)} \in \mathcal{Z}$ and $\overline{(a,b)} \preceq \overline{(x,y)}$, then $\overline{(c,d)} \oplus \overline{(a,b)} \preceq \overline{(c,d)} \oplus \overline{(x,y)}$. (vi) Show that if $[0] \preceq \overline{(c,d)}$ and $\overline{(a,b)} \preceq \overline{(x,y)}$, then $\overline{(c,d)} \otimes \overline{(a,b)} \preceq \overline{(c,d)} \otimes \overline{(x,y)}$. (vii) Show that if $\overline{(c,d)} \preceq [0]$ and $\overline{(a,b)} \preceq \overline{(x,y)}$, then $\overline{(c,d)} \otimes \overline{(x,y)} \preceq \overline{(c,d)} \otimes \overline{(a,b)}$.