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Exercise 1. Let A, B be two finite sets such that | A |=n and | B |= m.

(1) Using Mathematical Induction on n, show that the number of functions from
A into B is m".
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(2) Deduce from (1), that the number of subsets of A is 2" (assign to each subset
S of A its characteristic function x,)
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(3) Show that the number of subsets of A of size p < n is (Z) (use induction on
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Exercise 2. Let f : N — Z be the function defined by f(n) = (=D"n—1)+ .

4
Show that f is a bijection.
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Exercise 3. We define
g:NxN — N
(m,n) — 2771 2n—1)

Show that g is a bijection.
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Exercise 4 (Construction of Z). Let N = {0,1,5,3,...} be the set of all natural
numbers. We define the relation R on the cartesian product N x N by:

(z,y)R(a,b) <= x+b=y+a.

(i) Show that R is an equivalence relation.
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(17) If 2,y € N, then we denote by (x,y) the equivalence class of (z,y) with
respect to the equivalence relation R. Define the addition & on the quotient
set Z:= (N x N)/R by:

(z,y) ® (a,b) = (z +a,y +b),
and the multiplication ® by:
(#,y) ® (a,0) = (za + yb, zb + ya).

For x € N, we denote by [—z] = (0,2) and [z] = (z,0).
e Explain why [—z] ® [—y] = [—(x + y)]?
e Explain why [—z] ® [—y] = [zy]?
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(#4i) Show that
Z={[-z]:2 e N} U{[z] : z € N}
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(1v) We define the relation < on Z by:

(z,y) = (a,b) <= there esits k € N such that y +a =z + b+ k.
Show that < is a total ordering on Z and that we have
bl g i b e U g Y i Y Pl ] o
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(v) Show that if (¢,d) € Z and (a,b) < (z,y), then
(c,d) & (a,b) 2 (c,d) & (z,y).
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(vi) Show that if [0] < (¢,d) and (a,b) < (z,y), then
(¢,d) ® (a,0) = (¢, d) @ (2,y).
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(vii) Show that if (¢, d)

=< [0] and (a,b) < (z,y), then
(C, d) ® ($7y) = (Ca d) ® (a,b).

13



