
KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 232: FINAL, SEMESTER (151), DECEMBER 28, 2015

08:00–11:00 am

Name : .......................................... ........... ...........

ID : ..........................................

Exercise Points
1 : 10

2 : 10

3 : 10

4 : 10

5 : 14

6 : 20

7 : 13

8 : 10

9 : 10

10 : 13

11 : 7

12 : 13

Total : 140



2 MATH 232: FINAL, SEMESTER (151), DECEMBER 28, 2015

Exercise 1 (10 pts). Let P,Q,R be statements. Explain why the following argu-

ment is invalid:

P −→ Q
R −→ Q

∴ P −→ R
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Exercise 2 (10 pts). Find all the orderings R ⊆ A× A on the set A = {a, b, c}.
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Exercise 3 (10 pts). Let S be a set (not necessarily finite). Show that

| S | < | P (S) | .
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Exercise 4 (10 pts). Find all integers x, y such that

198x + 54y = 18.
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Exercise 5 (14 pts). Find all the positive integers a, b satisfying the following

properties:

• a < b

• gcd(a, b) = 20

• lcm(a, b) = 840
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Exercise 6 (20 pts). Let R be the relation defined on the cartesian product Z ×
(Z− {0}) by:

(x, y)R(a, b)⇐⇒ xb = ya.

(1) Show that R is an equivalence relation.
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(2) If (x, y) ∈ Z × (Z − {0}), then we denote by (x, y) the equivalence class of

(x, y) with respect to the equivalence relation R.

Show that if d = gcd(x, y) and (x1, y1) = (x
d
, y
d
), then (x, y) = (x1, y1).
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(3) Show that (600, 420) = (5, 7).
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Define the addition ⊕ on the quotient set Γ := [Z× (Z− {0})]/R by:

(x, y)⊕ (a, b) = (xb + ya, yb),

and the multiplication ⊗ by:

(x, y)⊗ (a, b) = (xa, yb).

(4) Show that (Γ,⊕) is an Abelian group.
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(5) Show that (Γ− {(0, 1)},⊗) is an Abelian group.
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Exercise 7 (13 pts). Prove that the function f : R \ {3} −→ R \ {7} defined by

f(x) =
7x + 11

x− 3
is bijective. Find its inverse function f−1.
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Exercise 8 (10 pts). Let N = {1, 2, 3, . . .}. Give an explicit bijection from N × N
onto Z.
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Exercise 9 (10 pts). Give an explicit bijection from the open interval (1, 2) onto

R.
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Exercise 10 (13 pts). List all the elements of S3 and give its table of multiplication.

Find all the subgroups of S3.
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Exercise 11 (7 pts). Let G be a group and H be a subgroup of G.

If | G |= 60, then what are all the possible values of | H |.
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Exercise 12 (13 pts). Let U be the set of all x ∈ Z14 having an inverse for the

multiplication.

(1) List all the elements of U .

(2) Give the table of multiplication on U .

(3) Find the order of each element of U .
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