KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 232: FINAL, SEMESTER (151), DECEMBER 28, 2015

08:00-11:00 am

Name :

ID :

Exercise	Points
1	: 10
2	: 10
3	: 10
4	: 10
5	: 14
6	: 20
7	: 13
8	: 10
9	: 10
10	: 13
11	: 7
12	: 13
Total	: 140

Exercise 1 (10 pts). Let P, Q, R be statements. Explain why the following argument is invalid:

$$\begin{array}{cccc} P & \longrightarrow & Q \\ R & \longrightarrow & Q \\ \hline \therefore P & \longrightarrow & R \end{array}$$

Exercise 2 (10 pts). Find all the orderings $R \subseteq A \times A$ on the set $A = \{a, b, c\}$.

Exercise 3 (10 pts). Let S be a set (not necessarily finite). Show that $\mid S \mid < \mid P(S) \mid.$

Exercise 4 (10 pts). Find all integers x, y such that

198x + 54y = 18.

Exercise 5 (14 pts). Find all the positive integers a, b satisfying the following properties:

- a < b
- gcd(a,b) = 20
- $\operatorname{lcm}(a, b) = 840$

Exercise 6 (20 pts). Let R be the relation defined on the cartesian product $\mathbb{Z} \times (\mathbb{Z} - \{0\})$ by:

$$(x, y)R(a, b) \iff xb = ya.$$

(1) Show that R is an equivalence relation.

(2) If $(x, y) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$, then we denote by $\overline{(x, y)}$ the equivalence class of (x, y) with respect to the equivalence relation R. Show that if $d = \gcd(x, y)$ and $(x_1, y_1) = (\frac{x}{d}, \frac{y}{d})$, then $\overline{(x, y)} = \overline{(x_1, y_1)}$. (3) Show that $\overline{(600, 420)} = \overline{(5, 7)}$.

Define the addition \oplus on the quotient set $\Gamma := [\mathbb{Z} \times (\mathbb{Z} - \{0\})]/R$ by:

$$\overline{(x,y)} \oplus \overline{(a,b)} = \overline{(xb+ya,yb)},$$

and the multiplication \otimes by:

$$\overline{(x,y)}\otimes\overline{(a,b)}=\overline{(xa,yb)}.$$

(4) Show that (Γ, \oplus) is an Abelian group.

(5) Show that $(\Gamma - \{\overline{(0,1)}\}, \otimes)$ is an Abelian group.

Exercise 7 (13 pts). Prove that the function $f : \mathbb{R} \setminus \{3\} \longrightarrow \mathbb{R} \setminus \{7\}$ defined by $f(x) = \frac{7x + 11}{x - 3}$ is bijective. Find its inverse function f^{-1} .

Exercise 8 (10 pts). Let $\mathbb{N} = \{1, 2, 3, \ldots\}$. Give an explicit bijection from $\mathbb{N} \times \mathbb{N}$ onto \mathbb{Z} .

Exercise 9 (10 pts). Give an explicit bijection from the open interval (1, 2) onto \mathbb{R} .

Exercise 10 (13 pts). List all the elements of S_3 and give its table of multiplication. Find all the subgroups of S_3 . **Exercise 11** (7 pts). Let G be a group and H be a subgroup of G. If |G| = 60, then what are all the possible values of |H|.

Exercise 12 (13 pts). Let U be the set of all $x \in Z_{14}$ having an inverse for the multiplication.

- (1) List all the elements of U.
- (2) Give the table of multiplication on U.
- (3) Find the order of each element of U.

21
