KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 232: EXAM I, SEMESTER (151), OCTOBER 20, 2015

08:00–10:00 pm

Name :

ID :

Exercise	Points
1	: 9
2	: 7
3	: 5
4	: 9
5	: 9
6	: 9
7	: 6
8	: 4
9	: 9
10	: 4
11	: 9
Total	: 80

Exercise 1. Write the propositional form of the following argument. Then use algebraic properties of logical equivalence to show that it is valid (**no truth table will be accepted**).

Argument:

- (1) If it is sunny tomorrow, then we will have a picnic
- (2) If it rains, then we will go bowling.
- (3) Either it will be sunny or it will rain tomorrow.
- (4) Therefore, either we will have a picnic or we will go bowling.

Exercise 2. Write the propositional form of the following argument. Then use algebraic properties of logical equivalence to show that it is valid (**no truth table will be accepted**).

Argument:

- (1) Either the meeting is in room 201, or it is in room 202.
- (2) It is not in room 201.
- (3) Therefore, it is in room 202.

Exercise 3. Explain why the following argument is a fallacy

Argument:

- (1) All humans are mortal.
- (2) Dogs are mortal.
- (3) Therefore, humans are dogs.

Exercise 4. Let P, Q be two propositions. Show that

 $(P \Longrightarrow Q) \lor (Q \Longrightarrow P)$

is a tautology.

Exercise 5. Let P, Q be two propositions. Use logical equivalences to show that $[(P \land \overline{(\overline{P} \lor Q)}) \lor (P \land Q)] \Longrightarrow P$

is a tautology.

Exercise 6. Let $x \in \mathbb{Z}$. Prove by contrapositive that if $x^2 + 2x + 3$ is odd, then x is even.

Exercise 7. Using proof by cases, show that for all $a, b \in \mathbb{R}$, we have |ab| = |a||b|.

Exercise 8. Let $x \in \mathbb{R}$. Show that if $x^2 - 2x + 3 = 0$, then $e^{x^2} = e^{2x+3}$.

Exercise 9. Show that for all $n \in \mathbb{Z}$, if n and n - 2 are not divisible by 4, then $n^2 - 1$ is divisible by 4 (Hint: write the Euclidean division of n by 4).

Exercise 10. Show that for all $x, y \in \mathbb{R}$, the following inequality holds

$$\frac{9}{16}x^2 + y^2 \ge \frac{3}{2}xy.$$

Exercise 11. For each of the following quantified statements, decide whether it is true or false:

(1)
$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, |x+y| > |x-y|.$$

(2)
$$\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, |x+y| > |x-y|.$$

- (3) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, |x+y| > |x-y|.$
- (4) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, |x+y| > |x-y|.$

13

_