KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 202 : TEST 2, SEMESTER (151), OCTOBER 11, 2015

Name :

ID :

Exercise	Points
1	: 10
2	: 6
3	: 12
4	: 6
5	: 6
6	: 6
7	: 6
Total	: 52

Exercise 1. Solve the IVP :

$$\left[(x^5 + y^5) \, \mathrm{dx} + xy^4 \, \mathrm{dy} = 0, \ y(1) = 2 \right]$$

Exercise 2. Use an appropriate substitution to transform the following DE :

$$y' + \frac{3y}{7x^2 + 11} = \frac{2x}{(7x^2 + 11)\sqrt{y}}$$

to a linear DE.

Exercise 3. Consider the DE :

$$(3y + 3y^3) dx + (xy^2 - x) dy = 0$$

- (i) Is the given DE exact?
- (*ii*) Find all $\alpha, \beta \in \mathbb{R}$ such that $\mu(x, y) = x^{\alpha}y^{\beta}$ is an integrating factor of the DE.
- (*iii*) Solve the DE.

Exercise 4. A thermometer reading $15^{\circ}C$ is brought into a room where the temperature is $30^{\circ}C$, 2 minutes later the thermometer reads $20^{\circ}C$. Find the thermometer reading 3 minutes after it was brought into the room.

Exercise 5. Consider the functions defined on the interval $I = \mathbb{R}$ by $: f_1(x) = x^2$, $f_2(x) = xe^x$.

- (i) Show that f_1, f_2 are linearly independent.
- (*ii*) Is there a homogeneous second order linear DE with $\{f_1, f_2\}$ as a fundamental set of solutions?

Exercise 6. Find an interval centered at 0 for which the following IVP :

$$(x-1)y'' + (\sec x)y' + \frac{1}{x+1}y = x^2, \quad y(0) = 1, y'(0) = 1$$

has a unique solution.

Exercise 7. Suppose that $y = c_1 x + c_2 x e^x + 1$ is a two-parameters family of solutions of a DE. Determine whether a member of the family can be found that satisfies the boundary conditions y(1) = 0, y(-1) = 3.