KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 202: TEST 1, SEMESTER (151), MARCH 14, 2015					
Name	:				
ID	:				

Exercise	Points
1	: 9
2	: 10
3	: 8
4	: 12
5	: 13
Total	: 52

2

Exercise 1.

(a) Find the order of the given DE. Determine whether the DE is linear or nonlinear.

(i)
$$x[y^{(4)}]^6 - y^{(5)} + y^{20} = \cos(x).$$

(ii)
$$(\cos x)y^{''} - x - y^{'} = e^{x}.$$

(b) Find all values of m so that the function $y=e^{mx}$ is a solution of the DE :

$$y^{'''} - 6y^{''} + 11y^{'} - 6y = 0.$$

Exercise 2. Consider the DE:

$$y' = \frac{1}{2}x(1 - y^2)$$

- (a) Verify that $y = \frac{1 + ce^{-(x^2/2)}}{1 ce^{-(x^2/2)}}$ is a one-parameter family of solutions of the DE.
- (b) Find all constant solutions of the DE.
- (c) Find a singular solution of the DE.

Exercise 3. Does the IVP

$$(y' = \sqrt{y^2 - 4} - \frac{1}{x}, \ y(1) = 7)$$

has a unique solution on an appropriate open interval containing 1? What is the largest interval on which the solution may be defined?.

Exercise 4. Solve the IVP

$$(xe^{x^2+\sin y} dx + \cos y dy = 0, \ y(0) = \pi)$$

What is the largest interval on which the solution may be defined?.

Exercise 5. Solve the DE

$$(x^{2} - 4)y' + y = \left(\frac{2 - x}{x + 2}\right)^{3/4}$$

on the interval I = (-2, 2).