KFUPM-----Term 151

Math 201	Quiz # 1(b)	Time: 25 minutes	Date: 15-09-15
Name	ID#	Sr # Sec.	Marks:- /8

Q 1. Convert the parametric equations

$$x = 2 \sec t, \ y = 2 \tan t, \ -\frac{\pi}{2} < t < \frac{\pi}{2}$$

 $x = 2\sec t, \ y = 2\tan t, \ -\frac{\pi}{2} < t < \frac{\pi}{2}$ into Cartesian(rectangular) equation. Sketch the curve and indicate the direction in which it is traced.

Q2. Find an equation of the tangent line at t = 1 for the curve

$$x = lnt$$
, $y = \sqrt{t+1}$.

KFUPM---Term 151

Math 201	Quiz # 1(c)	Time: 20 minutes	Date: 15-09-15
Name	ID#	Sr # Sec.	Marks:- /8

Q1 Convert the parametric equations

$$x = \cos 2t$$
, $y = \sin t$, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$

 $x = \cos 2t, y = \sin t, -\frac{\pi}{2} \le t \le \frac{\pi}{2}$ into cartesian(rectangular) equation. Sketch the curve and indicate the direction in which it is traced.

Q2. Find the area of the surface obtained by rotating the curve (about the x-axis)

$$x = 3\cos t$$
, $y = 3\sin t$, $0 \le t \le \frac{\pi}{3}$.

KFUPM---Term 151

Math 201	Quiz # 1(d)	Time: 25 minutes	Date: 15-09-15
Name	ID#	Sr# Sec.	Marks:- /8

Q 1. Convert the parametric equations $x = t + \frac{1}{t}$, $y = t - \frac{1}{t}$, t > 0 into Cartesian(rectangular) equation. Sketch the curve and indicate the direction in which it is traced.

Q2. Graph the set of points whose polar coordinates (r, θ) satisfy the given conditions:

(i)
$$\theta = -\frac{\pi}{4}, -3 \le r \le 3$$

(i)
$$\theta = -\frac{\pi}{4}, -3 \le r \le 3$$
 (ii) $\frac{\pi}{3} \le \theta \le \frac{2\pi}{3}, -2 \le r \le 0$