Student ID:

Student Name:

Serial Number:

Math 101, Section 32	Quiz 6 Version A
Fall 2015, Term 151	

Instructions: Show Your Work!

- **1.** (3 pts) Show that the equation $x^4 + 4x + 4 = 0$ has at most two real roots.
- **2.** (4 pts) If $f(x) = x \frac{1}{6}x^2 \frac{2}{3}\ln x$, find the
 - (a) local maximum and local minimum values (if any),
 - (b) intervals of concavity and the inflection points.

3. (3 pts) Find the limit

$$\lim_{x \to 1^+} (x - 1)^{\sqrt{x - 1}}$$

Student ID:

Student Name:

Serial Number:

Math 101, Section 32	Quiz 6
Fall 2015, Term 151	Version A

Instructions: Show Your Work!

- **1.** (3 pts) Show that the equation $x^4 + 4x + 4 = 0$ has at most two real roots.
- **2.** (4 pts) If $f(x) = x \frac{1}{6}x^2 \frac{2}{3}\ln x$, find the
 - (a) local maximum and local minimum values (if any),
 - (b) intervals of concavity and the inflection points.

3. (3 pts) Find the limit

$$\lim_{x \to 1^+} (x - 1)^{\sqrt{x - 1}}$$