Student ID: 201467380

Student Name: Scalch Al-haway

SIN + 1 - 6611X

Serial Number: * 27

Math 101, Section 32 Fall 2015, Term 151 Quiz 5 Version A

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- 3. (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

1)
$$\frac{dy}{dt} = 4 \text{ cm/s}$$
 $\frac{dy}{dt} = \frac{1}{2\sqrt{1+x^3}}$ $\frac{3x^2 \cdot dx}{dt}$ $\frac{2}{2\sqrt{1+x^3}}$ $\frac{dx}{dt} = \frac{1}{2\sqrt{1+x^3}}$ $\frac{2}{2\sqrt{1+x^3}}$ $\frac{1}{2\sqrt{1+x^3}}$ $\frac{2}{2\sqrt{1+x^3}}$ $\frac{1}{2\sqrt{1+x^3}}$ $\frac{1}{2\sqrt{1+x$

$$Q \quad DX = 0.03 \text{ m} \quad \text{which is reglarlite odd}$$

$$Q \quad 1 = 3 \text{ m}$$

$$Q \quad Area = \pi r$$

$$Q \quad A = 2\pi r \quad Dr$$

$$\frac{d}{dx} \left(\frac{\cosh^{-1}(\sin x^{2})}{\sinh x^{2}} \right)^{2} = \frac{2 \cos x^{2}}{1 + (\sin x^{2})^{2}} \cdot \frac{2 \cos x^{2}}{1 + (\sin x^{2})^{2}} = \frac{2 \cos x^{2}}{1 + (\cos x^{$$

Quiz 5 Version A Student ID: 201443240

Student Name: Alwar oivi

Serial Number: 13

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- **3.** (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

D
$$f(x) = \sqrt{1+x^3}$$
, $f'(x) = \frac{1}{2\sqrt{1+x^3}}$

$$x^{2} + y^{2} = 5$$

$$= X \cdot \frac{dx}{dt} + Y \cdot \frac{dy}{dt} = a$$

$$= \frac{3x}{3}.(4)$$

$$JA = 2\pi V \cdot dV$$

$$JA = 2\pi (3) \cdot (0.03)$$

$$= G\pi (0.03)$$

$$= G\pi (\frac{2}{50}) = \frac{9\pi}{50}$$

Relative vov =
$$\frac{df}{f}$$
= $\frac{2\pi r}{r} \cdot dr = 2 \cdot \left(\frac{0.03}{3}\right)$
= $\frac{6}{300} = \frac{2}{100} = 0.02 \,\text{m}$

$$=\frac{6}{100} = \frac{2}{100} = 0.02 \text{ m}$$

$$= \left(\frac{1}{1-\left(\sin^2\right)^2}\right), \left(\cos^2\right), \left(2\times\right)$$

$$= 2 \times Cos \times^{2}$$

$$| (Sin x^{2})|^{2}$$

$$= \frac{1}{1-x^2}$$

Student Name: Syltan Alshahlani.

Quiz 5 Version A

Math 101, Section 32 Fall 2015, Term 151

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?

Serial Number:

3. (3 pts) Find

$$\frac{3 \cdot 1}{1 - \sin^2 x^2} \cdot \cos(x^2) \cdot 2 \times \frac{2x \cos x^2}{1 - \sin^2 x^2} = 2 \times \frac{\cos x^2}{\cos x^2} = 2 \times \frac{\cos x}{\cos x} = 2 \times \frac{$$

$$\frac{dy}{dt} = 4 \text{ cm/s}, y=3,$$

$$(2,3) \leftarrow x=2,$$

$$y=3$$

 $\frac{dy}{dt} = \frac{1}{2} (1+x^3)^{\frac{1}{2}} \cdot 3x^2 \frac{dx}{dt}$

So, dx = 2 cm/s.

† }

Student ID: 201436940

Student Name: Abdulmaje ad Albab

Serial Number: 9

Math 101, Section 32 Fall 2015, Term 151 Quiz 5 Version A

Instructions: Show Your Work!

1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

$$\frac{dx}{dt} = ?$$

$$y' = \frac{1}{2\sqrt{1+x^2}} \cdot 3x^2 \cdot \frac{dx}{dt}$$

$$4 = \frac{1}{6} .12 . \frac{dx}{dt}$$

2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

Simplify your answer.

r = radius

Student Name: 201467920

Serial Number: 28

Student N Serial Nur

Math 101, Section 32 Fall 2015, Term 151

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- **3.** (3 pts) Find

Quiz 5

Version A

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right)$$
.

Simplify your answer.

$$y = \sqrt{1+x^{3}}$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{1+x^{3}}}, 3x^{2}, \frac{dx}{dx}$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{1+x^{3}}}, 7x^{2}, \frac{dx}{dx}$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{1+x^{2}}}, 7x^{2}, \frac{dx}{dx}$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{1+x^{2}}}, \frac{3(2)^{2}, dx}{dx}$$

$$\frac{dA}{dx} = 2\sqrt{1+x^{2}}$$

$$A = \pi \sqrt{2}$$

$$A = \pi \sqrt{2}$$

$$A = \pi \sqrt{2}$$

$$A = \pi \sqrt{2}$$

$$A = 2\pi \sqrt{4} \sqrt{4}$$

$$A = 36\pi (0.03)$$

$$A = 0.18$$

$$A = 0.02$$

$$= \frac{2 \times (c_f(x^2))}{1 - (s_i n(x))^2}$$

Q?)

$$= \frac{2 \times c_{sfx}}{(c_{s}x^{2})}$$

Student Name: mon ammed

Serial Number:

Math 101, Section 32 Fall 2015, Term 151

Instructions: Show Your Work!

1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

Quiz 5

Version A

- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- $\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right)$.

Simplify your answer.

3. (3 pts) Find

$$\frac{\partial}{\partial x} = \left[(oth)'(sinx) \right]$$

error = 0103

3 = 2 Tr 3 = 16

37=6元 か

1756 to 3

37 = 0.18 T

Quiz 5 Version A Student Name: Nawofsleholhra

Serial Number:

Instructions: Show Your Work!

1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

11-12 F

f(x) = \(1 + \times^3 \)

$$\frac{dt}{dy} = 4 / \frac{dx}{dx} = 3$$

3. (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

Simplify your answer.

$$4 = \frac{1}{2(1+(2))^3}$$
 $\frac{3(2)^2}{3}$ $\frac{dx}{dx}$

$$\frac{2d^{*}}{dt} = \frac{4}{2} \left(\frac{d^{*}}{dt} = 2 \right)$$

sind of cost of the (1- sin'd) (14 sin'd)

-1+ sin 2 d = 1005 2 d

Student Name: Alha 2mi Hhmad

Quiz 5 Version A

Math 101, Section 32 Fall 2015, Term 151

Instructions: Show Your Work!

1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?

Serial Number:

3. (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

$$= \frac{2 \times \cos x}{1 - (\sin x)^2} = \frac{2 \times \cot x}{(\cos x)^{2n}} = \frac{2 \times \cot x}{\cos x^2}$$

Quiz 5 Version A Student Name: MUSTata AIRWallahat Serial Number:

Instructions: Show Your Work!

1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

$$Y = \frac{3(4) dx}{(2) 3}$$

$$L = \frac{dx}{(4)}$$

•

Student ID: 201447860

Student Name: Khelid Al Qultani

Student Name: K We CLAN

Math 101, Section 32 Fall 2015, Term 151

Instructions: Show Your Work!

1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

$$\frac{dy}{dt} = \frac{1}{2\sqrt{1+x^2}} \cdot 3x^2 \frac{dx}{dt}$$

$$\frac{dy}{dt} = \frac{3x^2 \frac{dx}{dt}}{2\sqrt{1+x^2}}$$

$$4 = \frac{3(2)^2 \frac{dx}{dt}}{2\sqrt{1+(2)^2}}$$

$$\frac{12 \frac{dx}{dt}}{2\sqrt{1+(2)^2}}$$

$$\frac{dx}{dt} = \frac{2u}{w} = 2 \text{ cm/s}$$

2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?

Quiz 5

Version A

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

$$f(x) = \frac{1}{1 + (\sin x^2)^2} \cdot \cos(x^2) \cdot 2x$$

$$= \frac{2x \cos x^2}{1 - \sin x^2}$$

$$= \frac{2x \cos x^2}{\cos x^2}$$

$$= \frac{2x}{\cos x^2}$$

Cus + sin = 1

Cot & = cot x

Student Name: Abullah Alsackha

Serial Number: "

Math 101, Section 32 Fall 2015, Term 151

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- 3. (3 pts) Find

Quiz 5

Version A

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

Simplify your answer.

r= 3m

(2) Avea : Tr2

1/4 2KY. JV

relative orror= 0.02 m2

Student Name: Abdullah Ingolav

Quiz 5 Math 101, Section 32 Version A Fall 2015, Term 151

Serial Number:

Instructions: Show Your Work!

1. (4 pts) A particle moves along the curve
$$y = \sqrt{1+x^3}$$
. As it reaches the point (2,3) the y-coordinate is increasing at a rate of (4 cm/s) . At this instant, what is the rate at which the x-coordinate is changing?

2. (3 pts) The radius of a circle is measured to be 3 m with Ava possible error of 0.03 m. By using differentials, what is the relative error in the area? $\mathcal{H} = \mathcal{T} V^2$

3. (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

Simplify your answer.

$$\frac{3}{4^{2}} = \frac{1}{2C(4x^{3})} \cdot 3x^{2} \frac{dx}{dx}$$

$$(3)(4) = \frac{1}{2(1+2^{3})} \cdot 3(2^{3}) \frac{dx}{dx}$$

$$12 = \frac{1}{16} \cdot 12 \frac{dx}{dx}$$

$$\frac{dx}{dx} = 18 \text{ cm/s}$$

2)
$$\sin A = \pi r^2$$
, $\Delta r = 0.03$
 $f(x) = A = 2\pi r$
 $L(x) = f(x) - f(x)(x - a)$

of Coth (sinx). of sinx2. of x2 d coll-(sinx). (cosx2). (2x)

Quiz 5 Version A

dr.

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- 3. (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

d coth (sinx)

 $\frac{d}{dx} = \cosh x - 2x$ $= \cos x \cdot 2x$ $= \cos x \cdot 2x$ $= \sqrt{s_{1}^{2} \cdot 2x} + 1$

1. f

(5/h 2 /

& Can'x ; kilm x+1

fanh Sinx

Serial Number:

Omar Elsharked

Student Name:

Math 101, Section 32 Fall 2015, Term 151

Quiz 5 Version A

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- 3. (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

Simplify your answer.

$$\frac{dy}{d+} = \frac{1}{2} (1+x^{2})^{-1/2} \cdot 3x^{2} \frac{dx}{dx}$$

$$A = \frac{1}{2}(1+8)^{-1/2} \cdot 12 \cdot \frac{dx}{dx}$$

X - Coordinat is Changing

is
$$\left(2\left(\frac{cm}{s}\right)\right)$$

$$A = \pi r^2$$
 $dA = 2\pi r dr$
 $dA = 2\pi (3) (0.03)$

$$\frac{3}{dx} \frac{d}{dx} \left(\frac{1-x^2}{1-x^2} \right)$$

$$\frac{d^{1}}{dx} \int (9(x)) = \int (9(x)) \cdot 9(x)$$

$$= \frac{1}{1 - (5in x^{2})^{2}} \cdot 2XC \cdot 5X^{2}$$

cost x sint = 1 do + 14

 $\frac{d}{dx} \coth^{-1}(x) = \frac{1}{1 - x^2}$

Math 101, Section 32 Fall 2015, Term 151 Quiz 5 Version A Student ID: Munzir Ahmey

Student Name: 201474300

Serial Number: 35

Instructions: Show Your Work!

1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

$$\frac{dy}{dt} = \frac{1}{2\sqrt{1+x^3}} \cdot 3x^2 \cdot \frac{dx}{dt}$$

$$4 = \frac{1}{2\sqrt{1+2^3}} \cdot 12 \cdot \frac{dx}{dt}$$

$$\frac{dx}{dt} = \frac{2\sqrt{1+2^3}}{3} = \frac{2}{3} = \frac{2}{3} = \frac{2}{3}$$

$$dA = T 2r dr$$

 $dA = T 2(3) (0.03)$

$$\frac{dA}{A} = \frac{6\pi(0.03)}{9\pi}$$

$$=\frac{2(0.03)}{3}=0.02 \text{ m}^2$$

- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- **3.** (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

$$\frac{d}{dx} \left(\coth^{1}(\sin x^{2}) \right)$$

$$= \frac{1}{(\sin x^{2})^{2}} \cdot \cos x^{2} \cdot 2x$$

$$= \frac{1}{\cos^{2} x^{2}} \cdot \cos x^{2} \cdot 2x$$

$$= \frac{1}{\cos x^{2}} \cdot 2x$$

$$= \frac{2x}{\cos x^2}$$

$$=2xSecx^2$$

Quiz 5 Version A Student ID: 201431540

Student Name: Alsubhi, Ahmed

Serial Number: 4

Instructions: Show Your Work!

1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

, X=2 $\frac{dy}{dx} = \frac{4}{11}$ y2 = 1 + x3 we will use this equation Simplify your that has relation between Q A = Tr2 X and g.

$$2y\frac{dy}{dt} = 3x^2\frac{dx}{dt}$$

 $2(3)(4) = 3(2)^2 \frac{dx}{dx}$ $24 = 3x4 \frac{dx}{4}$ $24 = 12 \frac{dx}{11} \Rightarrow \frac{dx}{14} \cdot \frac{24}{12}$

dx = 2 50, x-coordinate is increasing at dirate of 2 cm/s.

- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- **3.** (3 pts) Find $\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$

$$\frac{2}{A} = \pi r^{2}$$

$$dA = 2\pi r dr.$$

$$relative error; \frac{dA}{A}$$

$$\frac{2\pi r dr}{\pi r^{2}} = \frac{2}{2} dr$$

$$\frac{2(0.03)}{(3)} = \frac{0.06}{3} = 0.02$$

$$\frac{d}{dx}\left(\cosh^{-1}\left(\sin x^{2}\right)\right)$$

$$= \coth^{-1}\left(\sin x^{2}\right)$$

$$= \cot^{-1}\left(\sin x^{2}\right)$$

$$= \cot^{-1}\left(\cos x^{2}\right)$$

$$= \cot^{-1}\left($$

Student Name: Alajmi, Rayan

Math 101, Section 32 Fall 2015, Term 151 Quiz 5 Version A

Serial Number: 8

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- 3. (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

Simplify your answer.

1)
$$y = \sqrt{1+x^{2}}$$
 $dy = \frac{1}{2\sqrt{1+x^{2}}} \cdot 3x^{2} \frac{dx}{dt}$
 $dt = \frac{1}{2\sqrt{1+x^{2}}} \cdot 3x^{2} \frac{dx}{dt}$
 $dt = 2\pi r \cdot dr$
 $dt = 3(2)^{2} \frac{dx}{dt}$
 $2\pi r = r \cdot dr$
 $dt = 3(2)^{2} \frac{dx}{dt}$
 $dt = 3(2)^{2} \frac{dx}{dt}$

3) of 1-12

$$\frac{1}{1-6inx^{9}} \Rightarrow \frac{1}{1-sinx^{4}} \Rightarrow \frac{-(cosx^{4})(4x^{3})}{(1-sinx^{9})^{2}} \Rightarrow \frac{4x^{3}cosx^{4}}{(1-sinx^{9})^{2}}$$

.)

Quiz 5 Version A Student Name: Hassan
Alabarabalnabi

Serial Number: 16

Instructions: Show Your Work!

1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

 $\mathcal{J} = \sqrt{1 + \alpha^3}$

- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- **3.** (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

Simplify your answer.

7 = 4 cm/s

 $2 d = \pi r^2 \qquad r = 3$

f(a+ok)=fa+dy

$$\frac{d}{dx}\sin^2 = \cos^2 \cdot 2x$$

$$\frac{d}{dx}\coth^2(\sin^2) = \frac{1}{1-\csc^2(\sin^2 x^2)}$$

$$\Rightarrow \frac{2 \times \cos x^2}{1 - \csc^2(\sin x^2)}$$

Student Names Natate Heart

Math 101, Section 32 Fall 2015, Term 151 Quiz 5 Version A Student Name: Mohammad Jeololavi Serial Number: 21

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- 3. (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

$$\frac{Q_1}{dy} = \frac{1}{2\sqrt{1+x^3}}$$

$$\frac{dt}{dy} = \frac{2\sqrt{1+x^3}}{3}$$

$$\frac{1}{4} = \frac{2\sqrt{1+x^3}}{3}$$

$$\frac{1}{4} = \frac{2\sqrt{1+x^3}}{3}$$

$$\frac{1}{4} = \frac{2\sqrt{1+x^3}}{3}$$

$$\frac{dt}{dy} = JTr^{2}$$

$$\frac{dt}{dy} = 2rJT$$

$$\frac{dt}{dy} = 2rJT$$

$$\frac{dt}{dy} = 6 JT$$

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^{2})\right)$$

$$\frac{d}{dx}\left(\operatorname{Sech}^{-1}(\operatorname{Sin}^{-1}x^{2})\right) + \left(\operatorname{Coth}^{-1}(\cos x^{2})\right)$$

$$\frac{d}{dx}\left(\operatorname{Min}^{-1}(\cos x^{2})\right)$$

$$\frac{d}{dx}\left(\operatorname{Min}^{-1}(\cos x^{2})\right)$$

Student Name: Ahmed Atody

Serial Number:

Math 101, Section 32 Fall 2015, Term 151

Quiz 5 Version A

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- 3. (3 pts) Find

$$\frac{d}{dx} \left(\coth^{-1}(\sin x^2) \right).$$

$$\frac{dy}{dt} = \frac{3 \times 2}{\sqrt{1 + x^3}} \frac{Jx}{JF}$$

$$4 = \frac{12}{\sqrt{9}} \frac{JX}{JF}$$

$$3 = \frac{1}{1}$$

$$\int f(x) = \prod Y + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) + \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = \int f(x) = 2 \prod Y$$

$$\int f(x) = 2$$

$$\frac{d}{dx} \left(\cosh^{-1}(\sin x^{2}) \right)$$

$$\Rightarrow \frac{d}{dx} \left(\coth^{-1}(\sin x^{2}) \right)$$

$$\Rightarrow \frac{d}{dx} \left(\coth^{-1}(\sin x^{2}) \right)$$

$$= \frac{1}{(\cosh^{-1}x^{2})}$$

$$= \frac{1}{(\cosh^{-1}x^{2})}$$

e to the second of the second

Quiz 5 Version A Student Name: Abdulaziz zinghaw Serial Number:

Instructions: Show Your Work!

1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

$$\hat{\xi}'(x) = \frac{1}{2}(1 + x^3)^{\frac{1}{2}x - 1} (3x^2)$$

$$= \frac{1}{2}(1 + x^3)^{-\frac{1}{2}} (3x^2)$$

2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

$$\frac{3}{2} \frac{3}{1+\sqrt{3}} = \frac{3}{4} \frac{3}{4} \frac{3}{2} \frac{3}{1+\sqrt{3}} = \frac{4}{4} \frac{3}{4} \frac$$

(3)

$$Cock = -csc^2$$

 $-csc^2 h^3 (5inx^2) \cdot -cosx^2$
 $= -csc^2 h^3 (-cosx^2 \cdot 2x) \cdot sinx^2 \cdot 2x$
 $= 2xsinx^2 (sc^2 h^3 (-2xcosx^2))$

Quiz 5 Version A Student Name: Abdyllah Aldgiweesh Serial Number: 25

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- **3.** (3 pts) Find

$$\frac{d}{dx} \left(\coth^{-1}(\sin x^2) \right).$$

1)
$$x = \frac{1}{3x^2} = \frac{3x^2x^2}{2(1+x^3)} = \frac{24}{3} = \frac{2}{3}$$

2) $x = \frac{8}{3x^2} = \frac{24}{27} = \frac{2}{3}$
2) $x = \frac{3}{3} = \frac{2}{27} = \frac{2}{3}$
 $x = \frac{2}{3} = \frac{2}{3} = \frac{2}{3}$
 $x = \frac{2}{3} = \frac{2}{3} = \frac{2}{3}$
 $x = \frac{2}{3} = \frac{2$

Student Name: Taha FaisaLiM

Serial Number: 7

Math 101, Section 32 Fall 2015, Term 151 Quiz 5 . Version A

Instructions: Show Your Work!

1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

$$2. \quad 1=3$$
area: 9π

2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

Instructions: Show Your Work!

Quiz 5 Version A Student ID: 201454100

Student Name: Maan Alse vaf

Serial Number: 24

77 P2

1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

$$\frac{\partial y}{\partial t} = 4 \text{ cm/s} \qquad f(x) = \sqrt{1 + x^3}$$

$$\frac{\partial x}{\partial t} = \frac{1}{\sqrt{1 + x^3}} \qquad f(x) = \sqrt{1 + x^3}$$

$$\frac{\partial y}{\partial t} = \frac{1}{\sqrt{1 + x^3}} \qquad \frac{1}{\sqrt{1 + x^3}} \qquad \frac{1}{\sqrt{1 + x^3}}$$

2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?

3. (3 pts) Find
$$\frac{d}{dx} \left(\coth^{-1}(\sin x^2) \right).$$
 Simplify your answer.

 $\frac{3y}{dt} = \frac{1}{2\sqrt{28}} \cdot \frac{3x^2}{dt}$ $\frac{3x^2}{dt} = \frac{3x^2}{2\sqrt{28}} \cdot \frac{3x^2}{dt}$ $\frac{3x}{4\sqrt{2}} = \frac{1}{2\sqrt{28}} \cdot \frac{3x^2}{dt}$ $\frac{3x}{4\sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{1}{2\sqrt{2}} \cdot \frac{3x^2}{dt}$ $\frac{3x}{4\sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{1}{2\sqrt{$

 $\frac{1}{1-x^2} = \frac{1}{3} \text{ of } (34h^{-1})$ $= \frac{1}{1-(sinx)^2}$ $= \frac{1}{1-sin^2x^4}$ $= \frac{1}{(0sx^4)^2} = sec^2x^4$

201480560 Student ID:

Student Name: Mosa Almutahhar

Serial Number:

Math 101, Section 32 Fall 2015, Term 151

Quiz 5 Version A

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- 3. (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

$$=\frac{2\times}{1+\sin^2}=-\frac{2\times}{\cos^2}$$

1)
$$\frac{dy}{dt} = 4 \frac{cm}{s}$$
 when $y = 3$
 $x = 2$
 $y = \sqrt{1 + x^3}$

$$\frac{dx}{dt} = \frac{dy}{dt}, \frac{2\sqrt{1+x^2}}{3x^2}$$

$$\frac{dA}{A} = \frac{zxxdx}{xx^2} = \frac{zdr}{r} = \frac{z(0.03)}{3}$$

$$\frac{dA}{A} = \frac{2\frac{3}{100}}{3} = \frac{6}{100} \cdot \frac{1}{2} = [0.02]$$

R1.41, 12

Math 101, Section 32 Fall 2015, Term 151

Quiz 5 Version A Student ID: AbJust 212 Amy Alustra Student Name:

Serial Number:

Instructions: Show Your Work!

(4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?

(3 pts) Find
$$\frac{d}{dx} \left(\coth^{-1}(\sin x^2) \right).$$

Simplify your answer.

$$= \frac{8inx^{2}}{1-x^{2}} + 2 \coth^{-1} sinx \cos x$$

relative en = ? 1

$$=$$
 $f(3) + f(3) (x-3)$

F92 (2"62"-9 2

$$(\cosh^{-1})' = (-\alpha^2)$$

$$(\cosh^{-1})' = (-\alpha^2)$$

$$(\cosh^{-1})' = (-\alpha^2)$$

Student ID: 2014 70160

Student Name: Hussin , Alymani

Serial Number:

Math 101, Section 32 Fall 2015, Term 151

Quiz 5 Version A

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- 3. (3 pts) Find

Coth x = y

coth y = X

 $\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$

de Coth (sing)

•

Quiz 5 Version A Student ID: 201439720
Student Name: Faisal Al Tahroni

Serial Number: ||

Instructions: Show Your Work!

1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

the rate at which the x-coordinate is changing?

$$\frac{3(4)}{2\sqrt{1+x^3}} = \frac{3x}{4}$$
(1) (4) = $\frac{3(4)}{2\sqrt{1+8}} = \frac{4x}{4t}$

2)
$$dy = f(x) dx$$

$$dy = 4\pi r dx$$

- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- 3. (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

Student Name: OSamanh

Serial Number:

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

$$1 y = \sqrt{1 + x^2}$$

$$\frac{y}{dx} = \frac{12 dx}{dt}$$

$$\frac{dx}{dt} = 2 cm/s$$

2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?

$$3. (3 pts)$$
 Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

$$\frac{1}{1+E}$$

$$\frac{2\times \cos^2}{1+\sin^2}$$

Student ID: 201447420

Student Name: Ibrowhim Alyon; Serial Number: 17

Quiz 5 Version A

Math 101, Section 32 Fall 2015, Term 151

Instructions: Show Your Work!

1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?

$$y = \sqrt{1 + x^3}$$

$$= \frac{1}{2\sqrt{1+x^3}} \cdot 3x^2 \cdot \frac{dy}{dx}$$

$$\frac{dy}{dt} (4) = \frac{1}{2\sqrt{1+x^3}} \cdot 3x^2 \cdot \frac{dy}{dt}$$

$$\sqrt{2} = \frac{1}{2\sqrt{1+x^3}} \cdot 3x^2 \cdot \frac{dy}{dt}$$

2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?

3. (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right)$$
.

Quiz 5 Version A Student Name: Fairal Al-Maban Serial Number:

Instructions: Show Your Work!

- **1.** (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- 3. (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

$$\frac{dy}{dt} = \left(\frac{3x^2}{2\sqrt{1+x^3}}\right) \frac{dx}{dt}$$

$$4 = \left(\frac{3(2)^2}{2\sqrt{1+(x)^3}}\right) \frac{dx}{dt}$$

$$\frac{24}{12} = \frac{dx}{dt}$$

$$\frac{24}{12} = \frac{1}{4}$$

$$2 = \frac{dx}{dt}$$

$$\frac{dx}{dt} = 2 \text{ cm/s}$$

$$\frac{dA - 2V \pi dV}{dt}$$

$$\frac{dA - 2V \pi (0.63)}{dt}$$

$$\frac{(os(x))^{2}x}{[-(sinx^{2})^{2}]}$$

$$=\frac{(os(x^{2}))^{2}x}{(os(x^{2}))}$$

$$=\frac{2x}{(os(x^{2}))}$$

$$\left(\frac{\cos^2 x + \sin^2 x}{1 - \sin^2 x}\right)$$

. . į

Serial Number: 03

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- (2,3)

$$\int_{a}^{b} (a) = \lambda + 1$$

$$\chi' = \frac{2yy' - 1}{3x^2}$$

dt 22

$$\chi' = \frac{2(3)(4) - 1}{3(2)^2}$$

- $x' = \frac{24-1}{3(4)}$
- $x' = \frac{23}{12} \, cm/s$
- so $\frac{dx}{dt}$ is changing with a rate of $\frac{23}{12}$ cm/s

- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- 3. (3 pts) Find \mathcal{T}_{γ} $\frac{d}{dx} \left(\coth^{-1}(\sin x^2) \right).$

Simplify your answer.

dy = f(au) dx $dy = 2\pi r dx$ $dy = 2\pi (3) (0.03)$

Felative area error = $\frac{6\pi(0.03) - 6\pi}{6\pi} | X100 =$

Nobel

sorry hard to adeulate

$$\frac{3}{(1-(\sin x^2)^2)} \cdot 2x \cos x^2 = \frac{2x \cos x^2}{(\cos x^2)^2} = \frac{2x}{\cos x^2} = 2x \sec x^2$$

Student ID: 2014 39280

Student Name: Borodar Aldahash

Math 101, Section 32 Fall 2015, Term 151 Quiz 5 Version A

Serial Number: \

Instructions: Show Your Work!

- 1. (4 pts) A particle moves along the curve $y = \sqrt{1+x^3}$. As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. At this instant, what is the rate at which the x-coordinate is changing?
- 2. (3 pts) The radius of a circle is measured to be 3 m with a possible error of 0.03 m. By using differentials, what is the relative error in the area?
- 3. (3 pts) Find

$$\frac{d}{dx}\left(\coth^{-1}(\sin x^2)\right).$$

Simplify your answer.

2) A=11/2

