Name : ID #...... Serial #: (Version 1)

1. The sum of the absolute maximum and the absolute minimum values of the function $f(x) = 2 \cos x + 2 \cos^2 x$, $\frac{\pi}{2} \le x \le 2\pi$ is

a)
$$-2$$

b) $\frac{-1}{2}$
c) $\frac{7}{2}$
d) 4

2. The sum of all critical numbers of the function $f(x) = \frac{(x-4)^2}{\sqrt[3]{x+1}}$ is

- a) -8
- b) 2
- c) 3
- d) 12

3. If
$$f(5) = \frac{-5}{2}$$
 and $f'(x) \ge \frac{-1}{2}$ for $3 \le x \le 5$, then the largest possible value of $f(3)$ is:

a)
$$\frac{-7}{2}$$

b) $\frac{-5}{2}$
c) $\frac{-3}{2}$
d) $\frac{-1}{2}$

4. Let $f(x) = \alpha x^2 + \beta x + \gamma$, where $\alpha \neq 0, \beta, \gamma$ are constants. The value of c that satisfies the conclusion of the **Mean Value Theorem** for f on the interval [3,7] is:

- a) 2
- b) 3
- c) 4
- d) 5

5. The function $f(x) = x^4 - 4x^3 + 4x^2 + 4$ has

- a) a local maximum at x = 1 and a local minimum at x = 0 and x = 2
- b) a local minimum at x = 1 and a local maximum at x = 0 and x = 2
- c) a local minimum at x = -2 and x = 0 and a local maximum at x = -1
- d) a local maximum at x = -2 and x = 0 and a local minimum at x = -1

6. Let $f(x) = x^4 - 4x^3$. Which one of the following statements is **TRUE**?

- a) The graph of f is concave up on $(-\infty, 0) \cup (2, \infty)$
- b) The graph of f is concave up on $(-\infty, -2) \cup (0, \infty)$
- c) The graph of f is concave up on $(-\infty, 0) \cup (1, \infty)$
- d) The graph of f is concave up on $(-\infty, -1) \cup (0, \infty)$

Name : **ID** #...... Serial #: (Version 2)

1. The absolute maximum of the function $f(x) = 2 \cos x + 2 \cos^2 x$, $\frac{\pi}{2} \le x \le 2\pi$ is

a) -2b) $\frac{-1}{2}$ c) $\frac{7}{2}$ d) 4

2. The sum of all critical numbers of the function $f(x) = \frac{(x+7)^2}{\sqrt[3]{x+2}}$ is

- a) -8
- b) 2
- c) 3
- d) 12

3. If
$$f(5) = \frac{-3}{2}$$
 and $f'(x) \ge \frac{-1}{2}$ for $3 \le x \le 5$, then the largest possible value of $f(3)$ is:

a)
$$\frac{-7}{2}$$

b) $\frac{-5}{2}$
c) $\frac{-3}{2}$
d) $\frac{-1}{2}$

4. Let $f(x) = \alpha x^2 + \beta x + \gamma$, where $\alpha \neq 0, \beta, \gamma$ are constants. The value of c that satisfies the conclusion of the **Mean Value Theorem** for f on the interval [1,3] is:

- a) 2
- b) 3
- c) 4
- d) 5

5. The function $f(x) = -x^4 + 4x^3 - 4x^2 - 4$ has

- a) a local maximum at x = 1 and a local minimum at x = 0 and x = 2
- b) a local minimum at x = 1 and a local maximum at x = 0 and x = 2
- c) a local minimum at x = -2 and x = 0 and a local maximum at x = -1
- d) a local maximum at x = -2 and x = 0 and a local minimum at x = -1

6. Let $f(x) = x^4 + 4x^3$. Which one of the following statements is **TRUE**?

- a) The graph of f is concave up on $(-\infty, 0) \cup (2, \infty)$
- b) The graph of f is concave up on $(-\infty, -2) \cup (0, \infty)$
- c) The graph of f is concave up on $(-\infty, 0) \cup (1, \infty)$
- d) The graph of f is concave up on $(-\infty, -1) \cup (0, \infty)$

Name : ID #..... Serial #: (Version 3)

- 1. The absolute minimum values of the function $f(x) = 2 \cos x + 2 \cos^2 x$, $\frac{\pi}{2} \le x \le 2\pi$ is
 - a) -2b) $\frac{-1}{2}$ c) $\frac{7}{2}$ d) 4

2. The sum of all critical numbers of the function $f(x) = \frac{(x-8)^2}{\sqrt[3]{x+2}}$ is

- a) -8
- b) 2
- c) 3
- d) 12

3. If
$$f(5) = \frac{-5}{2}$$
 and $f'(x) \ge \frac{1}{2}$ for $3 \le x \le 5$, then the largest possible value of $f(3)$ is:

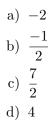
a)
$$\frac{-7}{2}$$

b) $\frac{-5}{2}$
c) $\frac{-3}{2}$
d) $\frac{-1}{2}$

4. Let $f(x) = \alpha x^2 + \beta x + \gamma$, where $\alpha \neq 0, \beta, \gamma$ are constants. The value of c that satisfies the conclusion of the **Mean Value Theorem** for f on the interval [1,5] is:

- a) 2
- b) 3
- c) 4
- d) 5

5. The function $f(x) = x^4 + 4x^3 + 4x^2 + 4$ has


- a) a local maximum at x = 1 and a local minimum at x = 0 and x = 2
- b) a local minimum at x = 1 and a local maximum at x = 0 and x = 2
- c) a local minimum at x = -2 and x = 0 and a local maximum at x = -1
- d) a local maximum at x = -2 and x = 0 and a local minimum at x = -1

6. Let $f(x) = x^4 - 2x^3$. Which one of the following statements is **TRUE**?

- a) The graph of f is concave up on $(-\infty, 0) \cup (2, \infty)$
- b) The graph of f is concave up on $(-\infty, -2) \cup (0, \infty)$
- c) The graph of f is concave up on $(-\infty, 0) \cup (1, \infty)$
- d) The graph of f is concave up on $(-\infty, -1) \cup (0, \infty)$

Name : ID #..... Serial #: (Version 4)

1. The product of the absolute maximum and the absolute minimum values of the function $f(x) = 2 \cos x + 2 \cos^2 x$, $\frac{\pi}{2} \le x \le 2\pi$ is

2. The sum of all critical numbers of the function $f(x) = \frac{(x-9)^2}{\sqrt[3]{x-4}}$ is

- a) -8
- b) 2
- c) 3
- d) 12

3. If
$$f(5) = \frac{-3}{2}$$
 and $f'(x) \ge \frac{1}{2}$ for $3 \le x \le 5$, then the largest possible value of $f(3)$ is:

a)
$$\frac{-7}{2}$$

b) $\frac{-5}{2}$
c) $\frac{-3}{2}$
d) $\frac{-1}{2}$

4. Let $f(x) = \alpha x^2 + \beta x + \gamma$, where $\alpha \neq 0, \beta, \gamma$ are constants. The value of c that satisfies the conclusion of the **Mean Value Theorem** for f on the interval [3,5] is:

- a) 2
- b) 3
- c) 4
- d) 5

5. The function $f(x) = -x^4 - 4x^3 - 4x^2 - 4$ has

- a) a local maximum at x = 1 and a local minimum at x = 0 and x = 2
- b) a local minimum at x = 1 and a local maximum at x = 0 and x = 2
- c) a local minimum at x = -2 and x = 0 and a local maximum at x = -1
- d) a local maximum at x = -2 and x = 0 and a local minimum at x = -1

6. Let $f(x) = x^4 + 2x^3$. Which one of the following statements is **TRUE**?

- a) The graph of f is concave up on $(-\infty, 0) \cup (2, \infty)$
- b) The graph of f is concave up on $(-\infty, -2) \cup (0, \infty)$
- c) The graph of f is concave up on $(-\infty, 0) \cup (1, \infty)$
- d) The graph of f is concave up on $(-\infty, -1) \cup (0, \infty)$