Department of Mathematics and Statistics KFUPM STAT 319-02 Quiz#1, Time: 30 mins

Instructor's Name: Nasir Abbas

 Student's Name:
 ID:
 Section#:
 02

Q.No.1:- A manufacturer of automobiles conducted a market survey. Eighty percent of the customers want better fuel efficiency, while 55% want a vehicle navigation system and 45% percent want both features.

a. Find the probability that a person wants either better fuel efficiency or a vehicle navigation system.

b. Find the probability that a person wants better fuel efficiency but not a vehicle navigation system.

c. Find the probability that a person wants a vehicle navigation system given that he also wants a better fuel efficiency.

d. let the event A: the customers want better fuel efficiency, B: the customers want a vehicle navigation system, are the two events independent? Explain using probability.

Q.No.2:- In a semiconductor manufacturing process, three wafers from a lot are tested. Each wafer is classified as pass or fail. Assume that the probability that a wafer passes the test is 0.8 and that wafers are independent. Determine the probability mass function of the number of wafers from a lot that pass the test. Also find the probability of getting one wafers that passes the test.

STAT-319 Formula Sheet for First Major Exam Term 143

 $P(A \cup B) = P(A) + P(B) - P(A \cap B) = P(A \cap B') + P(A \cap B) + P(A' \cap B)$ $P(A \cup B) = 1 - P(A \cup B)' = 1 - P(A' \cap B')$ and $P(A \cap B)' = P(A' \cup B')$ $P(A \mid B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$ and $P(A \cap B) = P(A).P(B | A) = P(A | B).P(B)$ $P(B_i | A) = \frac{P(A | B_i) \cdot P(B_i)}{\sum_{i=1}^{k} P(A | B_i) \cdot P(B_i)}, P(A) \neq 0$ $\mu = E(X) = \sum x f(x); \quad E(X^2) = \sum x^2 f(x) \text{ and } \sigma^2 = E(X - \mu)^2 = E(X^2) - \mu^2$ Discrete Uniform Distribution: $f(x) = \frac{1}{n}$; $x = x_1, x_2, ..., x_n$; $\mu = \frac{x_n + x_1}{2}$; $\sigma^2 = \frac{(x_n - x_1 + 1)^2 - 1}{12}$ Binomial Distribution: $f(x) = \binom{n}{x} p^x (1-p)^{n-x}$; x = 0, 1, ..., n; $\mu = np$; $\sigma^2 = np(1-p)$ Geometric Distribution: $f(x) = p(1-p)^{x-1}$; x = 1,2,...; $\mu = 1/p$; $\sigma^2 = (1-p)/p^2$ Hypergeometric Distribution: $f(x) = \frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{x}}$; $x = \max\{0, n + K - N\}$ to $\min\{K, n\}; \mu = np;$ $\sigma^2 = np(1-p)\frac{N-n}{N-1}; \ p = \frac{K}{N}$ Poisson Process: $f(x) = \frac{e^{-\lambda t} (\lambda t)^x}{r!}$; $x = 0, 1, ..., \mu = \lambda t$; $\sigma^2 = \lambda t$ $F(b) = P(X \le b) = \int_{-\infty}^{b} f(x) dx$ and $P(a < X < b) = \int_{a}^{b} f(x) dx = F(b) - F(a)$ $\mu = E(X) = \int_{-\infty}^{\infty} xf(x) dx; \quad E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx \text{ and } \sigma^2 = E(X-\mu)^2 = E(X^2) - \mu^2$ Continuous Uniform Distribution: $f(x) = \frac{1}{x_n - x_1}; \quad x_1 \le x \le x_n; \quad \mu = \frac{x_n + x_1}{2}; \quad \sigma^2 = \frac{(x_n - x_1)^2}{12}$ Exponential Distribution: $f(x) = \lambda e^{-\lambda x}$; x > 0; $\mu = \frac{1}{\lambda}$; $\sigma^2 = \frac{1}{\lambda^2}$