King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics MATH 301 EXAM III 2014-2015 (143)

Monday, August 2, 2015	Allowed Time: 2 Hours	
Name:		
ID Number:	Serial Number:	
Section Number:	Instructor's Name:	

Instructions:

- 1. Write neatly and legibly. You may lose points for messy work.
- 2. Show all your work. No points for answers without justification.
- 3. Calculators and Mobiles are not allowed.
- 4. Make sure that you have 8 different problems

Problem No.	Points	Maximum Points	
1		10	
2		21	
3		17	
4		6	
5		10	
6		13	
7		15	
8		8	
Total:		100	

 ${f Q1}$) Classify the given partial differential equation as hyperbolic, parabolic, or elliptic

(a)
$$\frac{\partial^2 u}{\partial x^2} - 3 \frac{\partial^2 u}{\partial x \partial y} - 2 \frac{\partial^2 u}{\partial y^2} = 0$$

(b)
$$a^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$

Q2) Solve the heat equation	$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t} + u ,$	$0 < x < \pi, t > 0$
subject to the given conditions	u(0,t)=0,	$u(\pi,t)=0,\ t>0$
	u(x,0) = 100,	$0 < x < \pi$

Q3) Find the Fourier series expansion of the function $f(x) = \begin{cases} 0 & -\pi < x < 0 \\ x^2 & 0 \le x < \pi \end{cases}$ What does the series converge to when x = 0? **Q4**) Expand f(x) = x, $-\pi < x < \pi$ in a sine series.

 ${f Q5}$) Write out the first three nonzero terms in the Fourier-Legendre expansion of the function

$$f(x) = \begin{cases} 0, & -1 < x < 0\\ 2x, & 0 \le x < 1 \end{cases}$$

 $Q6\)$ $\,$ Consider the Parametric Bessel Equation:

$$x^{2}y + x y + (\alpha^{2}x^{2} - 4)y = 0$$

Subject to: y is bounded on [0,5], y(5) = 0

a) State the eigenvalues and the eigenfunctions.

b) Put the differential equation in self-adjoint form

c) Give the orthogonality relation.

 ${f Q7}$) a) show that the set of functions

 $\{\sin nx\}, n = 1, 2, 3, \cdots$

is orthogonal on the interval $[0, \pi]$.

b) Find the norm of each function in the set.

b) Use the orthogonal set given in part (a) to construct an orthonormal set.

Q8) Expand $f(x) = x^2$, 0 < x < 1, in a Fourier-Bessel series, using Bessel functions of order two that satisfy the boundary condition $J_2(\alpha) = 0$.