King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics MATH 301 EXAM II (part I) 2014-2015 (143)

Monday, July 6, 2015	Allowed Time: 1 Hours	
Name:		
ID Number:	Serial Number:	
Section Number:	Instructor's Name:	

Instructions:

- 1. Write neatly and legibly. You may lose points for messy work.
- 2. Show all your work. No points for answers without justification.

3. Calculators and Mobiles are not allowed.

4. Make sure that you have 3 different problems (3 pages + cover page).

Problem No.	Points	Maximum Points
1		18
2		16
3		16
Total:		50

Q1. Use the **Stokes' theorem** to evaluate $\oint_C y \, dx + 2x \, dy + z \, dz$, where *C* is the curve of intersection of the cylinder $x^2 + y^2 = 1$ with the upper half sphere $x^2 + y^2 + z^2 = 4$. Orient C counterclockwise as viewed from above.

(note: If you don't use **Stokes' theorem,** you will get zero)

Q2. Let D be the region lying inside the cylinder $x^2 + y^2 = 1$ bounded by the two planes z = 0 and z = 2 - y. Use the **divergence theorem** to find the outward flux $\iint_S (\mathbf{F} \cdot \mathbf{n}) dS$ of the vector field $\mathbf{F} = z \, \mathbf{k}$, where S is the boundary of D.

Q3. Use the Laplace transform to solve the integrodifferential equation

$$y'' + y + \int_0^t y(\tau) \sinh(t-\tau) d\tau = \delta(t-1), \quad y(0) = 1, \quad y'(0) = 0.$$

Preview Test: Exam2

* Test Info	rmation
Description	Respondus
Instructions	
Timed Test	t This test has a time limit of 1 hour.This test will save and submit automatically when the time expires. Warnings appear when half the time , 5 minutes , 1 minute , and 30 seconds remain.[<i>The timer does not appear when previewing this test</i>]
Multiple Attempts	Not allowed. This test can only be taken once.

 * Question Completion Status:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

 Save All Answers
 Save and Submit

 QUESTION 1

 Let $G(s) = \mathcal{L} \{ g(t) \}$

 where $g(t) = 4 t \cosh(6t)$ then G(1) =

 QUESTION 2

 Let $G(s) = \mathcal{L} \{ g(t) \}$ 4 points
 Save Answer

 Let $G(s) = \mathcal{L} \{ g(t) \}$ where $g(t) = 5 t^3 + 2$ then G(1/2) =

QUESTION 3	4 points	Save Answer
Let F(s) be the laplace transform of f (t) = 100 e ^{-9t} cos(7t) then		

F(0) =

QUESTION 4

The piecewise function

 $f(t) = \begin{cases} a & 0 \le t < 5 \\ b & 5 \le t < 9 \\ 0 & t \ge 9 \end{cases}$ can be written in terms of step functions as $f(t) = \alpha + \beta \,\mathcal{T} \mathcal{U}(t-5) + \gamma \,\mathcal{T} \mathcal{U}(t-9)$

if a = 8 . b = 9 , then $\alpha - \beta + \gamma =$

6 points Save Answer

QUESTION 8	5 points	Save Answer
Let $G(s) = \mathcal{L}\{19 t^{3/2}\}$		
then $G(\sqrt[5]{\pi})$ =		
QUESTION 9	4 points	Save Answer
Let $G(s) = \mathcal{L}\left\{g(t)\right\}$		
where g(t) = e ^{5t} * sinh(5t) then G(1) =		
{note that * is the convulotion symbol}		
QUESTION 10	4 points	Save Answer
Let $G(s) = \mathcal{L}\left\{g(t)\right\}$		
Let $G(s) = \mathcal{L} \{ g(t) \}$ where $g(t) = 3e^{-3t} + 6e^{6t}$		
Let $G(s) = \mathcal{L} \{g(t)\}$ where $g(t) = 3e^{-3t} + 6e^{6t}$ then $G(2) =$		
Let $G(s) = \mathcal{L} \{ g(t) \}$ where $g(t) = 3e^{-3t} + 6e^{6t}$ then $G(2) =$		
Let $G(s) = \mathcal{L}{g(t)}$ where $g(t) = 3e^{-3t} + 6e^{6t}$ then $G(2) =$		

QUESTION 11	4 points	Save Answer
Let $F(s) = \mathcal{L}\{ 3 \delta(t-2) \}$ then F(1) =		

Click Save and Submit to save and submit. Click Save All Answers to save all answers.

Save All Answers

Save and Submit