King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics MATH 301 EXAM I (part I) 2014-2015 (143)

Sunday, June 21, 2015	Allowed Time: 1 Hours
Name:	
ID Number:	Serial Number:
Section Number:	Instructor's Name:

Instructions:

- 1. Write neatly and legibly. You may lose points for messy work.
- 2. Show all your work. No points for answers without justification.

3. Calculators and Mobiles are not allowed.

4. Make sure that you have 3 different problems (3 pages + cover page).

Problem No.	Points	Maximum Points
1		20
2		16
3		14
Total:		50

1) Use Green's Theorem to find the work done by the force

$$\mathbf{F} = -xy^2\mathbf{i} + x^2y\,\mathbf{j}$$

around the given closed curve.

2) Evaluate the line integral

$$\int_C 8y \, dx + 7z \, dy + 7x \, dz$$

on the given curve between (0,0,0) to (6,8,5).

- 3) Consider the vector field $\mathbf{F} = y \mathbf{i} + x \mathbf{j}$.
- i) Show that F is conservative
- ii) Find a potential $\phi(x, y)$ whose gradient is the vector field **F**.

iii) Evaluate the line integral

$$\int_C y \, dx + x \, dy$$

along the curve C between (-3, -3) and (4, 4).

King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics MATH 301 EXAM I (part II) 2014-2015 (143)

Sunday, June 21, 2015

Allowed Time: 1 Hours

Test Information

Description Respondus

Instructions

Multiple Attempts Not allowed. This test can only be taken once.

Value of the second second

Save and Submit

QUESTION 1

 Let F = < 4zy , 5xz , 4xy > Find div(curl F)

10 points

QUESTION 2

1. Let F = < 6zy , 6xz , 4xy > Find || curl F $|_{(1,2,3)}$ || =

10 points

QUESTION 3

 Let f = 3zxy / x + 8xz / y + 8xy / z Find curl (grad (f)) =

10 points

QUESTION 4

1. Let f = 4zy / x + 3xz / y + 4xy / z Find $\nabla \cdot (\nabla f)|_{(1,1,1))} =$

10 points

QUESTION 5

1. Find the directional derivative of $f(x,y) = (5xy + 4)^2$ at the point (2,4) in the direction of (4,3)

10 points

QUESTION 6

1. Let g(x,y,z) = xyz then the minimum value of $D_u g(0,1,-1)$ is 1

C True

C False

10 points

QUESTION 7

1. The velocity vector field F(x,y,z) = y i + x j + z kfor a fluid is irrotational

C True

False

10 points

QUESTION 8

- 1. The vector field F(x,y) = x i + y j is conservative
- C True

C False

10 points

QUESTION 9

1. The function ϕ (x,y) = x² - y² is a potential function for F(x,y) = 2x i + y j

C True

C False

10 points

QUESTION 10

```
1. Let r(t) be a vector function that satisfies
  r '' (t) = < 0 , -5sin t , -cos t >
  and
  r(0) = (0,0,1)
  and
  r ' (0) = (3,5,0)
  then
  || r(0) || =
```

10 points

QUESTION 11

```
1. The parametric curve of

(x-1)^2 / 3^2 + (y+2)^2 / 8^2 = 1

is

x(t) = a \cos t + c

y(t) = b \sin t + d

0 < t < \pi

then

a + b + c + d =
```

10 points

QUESTION 12

1. The arclength of the curve traced by the vector function $r(t) = (3\cos t) i + (3\sin t) j + (7t) k, 0 < t < 2 \pi$ is equal to (note: use 4 decimals and $\pi = 3.14159$)

10 points

Click Save and Submit to save and submit. Click Save All Answers to save all answers.

Save and Submit