Full Name: Section and Serial number: ID:

Question 1 Show that the IVP below has a unique solution on $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$.

$$(\cos x)y'' + (\sin x)y' + \frac{y}{x+1} = \tan x$$
 with $y(0) = 1$ and $y'(0) = 0$.

Question 2 Let $W = \{(0, x, y, z, t) \in \mathbb{R}^5$ such that $x + y + 2t = z + t = 0\}$. Find a basis of *W* and then, determine the dimension of *W*.

Question 3 Let $W_1 = \{A \in M_{2,2} \text{ with } A = 2A^T\}$ and $W_2 = \{A \in M_{2,2} \text{ with } A \neq 2A^T\}$ where $M_{2,2}$ is the set of all 2×2 real matrices. Determine if W_1 and W_2 are subspaces of $M_{2,2}$ or not. (Justify your answer)

Question 4 In each part, determine if the given functions are linearly dependent or independent on $(-\infty,\infty)$. (Justify your answer)

a) $g_1(x) = x^2$, $g_2(x) = x^2 + 2x$, $g_3(x) = (x+1)^2$

b)
$$f_1(x) = 1$$
, $f_2(x) = x+1$, $f_3(x) = (x+1)^2$, $f_4(x) = (x+1)^3$, $f_5(x) = x^3 + 3x^2 + x - 1$

Question 5 Solve the following DE:

$$D^{2}(D^{3}-3D-2)(D^{2}+2D+2)^{2}y=0.$$