King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 201 Major Exam I The Third Semester of 2014-2015 (143)

Time Allowed: 120 Minutes

Name: I	ID#:
Section/Instructor: S	Serial #:

- Mobiles and calculators are not allowed in this exam.
- Provide all necessary steps required in the solution.

Question $\#$	Marks	Maximum Marks
1		10
2		14
3		12
4		14
5		14
6		12
7		14
8		10
Total		100

Q:1 Consider the parametric equations $x = 2 + \sin t$, $y = \cos t + 1$.

(a) (5 points) Eliminate the parameter to find a cartesian equation.

(b) (5 points) Sketch the curve for $0 \le t \le \pi$ and mark the direction in which the curve is traced as t increases.

Q:2 (a)(7 points) Find the equation of tangent line to the curve t = ln (x - t), $y = t e^t$ at t = 0.

(b) (7 points) Find the length of the curve $x = 2t - 2\sin t, \ y = 2 - 2\cos t, \ 0 \le t \le 2\pi.$

Q:3 (a)(6 points) Write the polar equation $r = (ln \ r - ln \cos \theta) \ csc\theta$ in cartesian coordinates.

(b) (6 points) Graph the sets of points whose polar coordinates satisfy the following conditions

$$1 \le r \le 2$$
 and $\frac{2\pi}{3} \le \theta \le \frac{5\pi}{6}$.

Q:4 (a)(6 points) Identify the symmetries of the curve $r^2 = 4\cos\theta$.

(b) (6 points) Find the slope of the curve $r = 1 + \sin \theta$ at $\theta = \frac{\pi}{3}$.

Q:5 (14 points) Find the area of the region that lies inside both curves $r = \cos 2\theta$ and $r = \sqrt{3} \sin 2\theta$ for $0 \le \theta \le \frac{\pi}{2}$.

Q:6 (a) (6 points) Find an equation of the sphere that passes through the point (2, -4, 3) and has center (1, 2, 5). Describe the intersection of this sphere with the *xz*-plane.

(b) (6 points) If the angle between two unit vectors \overrightarrow{a} and \overrightarrow{b} is $\frac{\pi}{3}$, then find the value of $|3\overrightarrow{a}-2\overrightarrow{b}|$.

Q:7 (6 points) Find the vector projection of $\overrightarrow{a} = <1, 1, 1 >$ onto $\overrightarrow{b} = <2, 3, 4 >$ and the scalar component of \overrightarrow{a} in the direction of \overrightarrow{b} .

(b) (8 points) Find a unit vector perpendicular to the plane P(1, -1, 0), Q(2, 1, -1) and R(-1, 1, 2).

Q:8 (10 points) Find the volume of the parallelepiped determined by the vectors \overrightarrow{AB} , \overrightarrow{AC} , and \overrightarrow{AD} where

 $A(1,0,0), \ B(0,2,0), \ C(0,0,3), \ D(0,1,3).$