King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 131 (Term 143)

Final Exam – CODE 002

(Duration: 150 minutes. Number of Exercises: 25)

Student Name Student ID:

Exercise 1

The demand function for an electronics company's laptop computer line is p = 2400 - 6q, where p is the price (in dollars) per unit when q units are demanded (per week) by consumers. The level of production that will maximize the manufacturer's total revenue is

(a) 4000 (b) 2400 (c) 2000 (d) 400 (e) 200

Exercise 2

Suppose the cost to produce 10 units of a product is \$40 and the cost of 20 units is \$70. Assuming cost is linearly related to output, the cost to produce 30 units is

(a) \$100 (b) \$105 (c) \$110 (d) \$115 (e) \$120

Exercise 3

Painters are often paid either by the hour or on a per-job basis. The rate they receive can affect their working speed. For example, suppose they can work either for \$9.00 per hour or for \$320 plus \$3 for each hour less than 40 if they complete the job in less than 40 hours. Suppose the job will take t hours. If $t \ge 40$, clearly the hourly rate is better. If t < 40, then the hourly rate will be better for the painter if t is equal or greater than:

(a) 36 (b) 37 (c) 38 (d) 39 (e) 40

Exercise 4

A company is designing a package for its product. One part of the package is to be an open box made from a square piece of aluminum by cutting out a 2-cm square from each corner and folding up the sides. The box is to contain 50 cm^3 . The length of the square piece of aluminum is:

(a) $4 + 5\sqrt{2}$ cm (b) 9 cm (c) 29 cm (d) 4 cm (e) 5 cm

A diet is to contain at least 16 units of carbohydrates and at most 20 units of protein. Food A contains 2 units of carbohydrates and 4 units of protein; food B contains 2 units of carbohydrates and 1 unit of protein. Food A costs \$1.20 per unit and food B costs \$0.80 per unit. Let x = Number of units of food A and y = Number of units of food B. The linear programming problem to minimize cost Z is:

(a) Minimize Z = 1.2x + 0.8y subject to $2x + 2y \ge 16$; $4x + y \ge 20$. (b) Minimize Z = 16x + 20y subject to $2x + 2y \ge 1.20$; $4x + y \ge 0.8$. (c) Minimize Z = 1.2x + 0.8y subject to $2x + 4y \ge 16$; $2x + y \le 20$. (d) Minimize Z = 1.2x + 0.8y subject to $x + y \ge 8$; $4x + y \le 20$. (e) Minimize Z = 0.8x + 1.2y subject to $2x + 2y \ge 16$; $4x + y \le 20$.

Exercise 6

Consider the function Z = y - x subject to $x \ge 3$, $x + 3y \ge 6$, $x - 3y \ge -6$, $y \ge 0$. Then Z has:

(a) no minimum value
(b) a maximum value at (0, 2)
(c) a minimum value at (3, 3)
(d) a maximum value at (3, 1)
(e) a minimum value at (6, 0)

Exercise 7

The market equilibrium point for a product occurs when 13,500 units are produced at a price of \$4.50 per unit. The producer will supply no units at \$1, and the consumers will demand no units at \$20. Assuming the <u>supply</u> equation is linear, it is given by:

(a) 7q + 27,000p - 27,000 = 0(b) 31q + 27,000p - 540,000 = 0(c) 7q - 540,000p + 27,000 = 0(d) 7q - 27,000p + 27,000 = 0(e) 31q - 27,000p + 540,000 = 0

Exercise 8

The system
$$\begin{cases} y = \frac{x^2}{x-1} + 1\\ y = \frac{1}{x-1} \end{cases}$$
 has

(a) no solution

- (b) one solution
- (c) two solutions
- (d) one-parameter family of solutions
- (e) two-parameter family of solutions

A owes B the sum of 5,000 and agrees to pay B the sum of 1,000 at the end of each year for five years and a final payment at the end of the sixth year. Assume that money is worth 8% compounded annually and let *x* denote the final payment. Then:

(a) $x = 5,000 - 1,000s_{5|0.08}$ (b) $x = 5,000 - 1,000a_{5|0.08}$ (c) $x = (1.08)^{6} (5,000 - 1,000a_{5|0.08})$ (d) $x = (1.08) (5,000 - 1,000s_{5|0.08})$ (e) $x = (1.08)^{-6} (5,000 - 1,000a_{5|0.08})$

Exercise 10

Ahmed wishes to lease a car for a period of 6 months. The fee is 1,000 SR per month payable at the beginning of each month. Suppose that he wants to make a payment at the beginning of the lease period to cover all fees for the six-month period. If money is worth 9% compounded monthly, this payment will be:

(a) 5,845.598 SR	(b) 5,889.440 SR	(c) 6,159.484 SR	(d) 6,845.598 SR	(e) 7,159.484 SR
[From Appendix A:	1		$889440; a_{6 0.0075} = 13631; s_{7 0.0075} = 7.$	

Exercise 11

A debt of \$7,000 due in five years is to be repaid by a payment of \$3,000 now and a second payment at the end of five years. If the interest rate is 8% compounded monthly, the second payment will be:

Exercise 12

At a nominal rate of interest R, compounded semiannually, money will double in 4 years. Then R =

(a) $\sqrt[8]{2} - 2$ (b) $\sqrt[8]{2} - 1$ (c) $2^{\frac{5}{4}} - 2$ (d) $\sqrt[4]{2} - 1$ (e) $2^{\frac{9}{8}} - 2$

Exercise 13

We use the simplex method to solve the following linear programming problem:

Maximize
$$Z = -3x_1 + 5x_2 + 4x_3 - x_4$$
 subject to
$$\begin{cases} x_1 + x_3 - x_4 \le 2\\ x_2 + x_3 + x_4 \le 5\\ -x_1 + x_2 + x_3 + x_4 \le 3\\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

The maximum is

(a) 15 (b) 16 (c) 17 (d) 18 (e) 19

A subcommittee of 4 members is to be selected from a committee of 4 males and 4 females. If <u>at least</u> 2 females are to serve on this subcommittee, the number of ways this can be done is:

(a) 12 (b) 36 (c) 37 (d) 52 (e) 53

Exercise 15

On a history exam, each of 6 items in one column is to be matched with exactly one of 8 items in another column. No item in the second column can be selected more than once. The number of ways the matching can be done is:

8			6	
(a) 6^8	(b) $_{8}P_{6}$	(c) ${}_{8}C_{6}$	(d) 8°	(e) 48

Exercise 16

Suppose that $S = \{1,2,3,4,5,6,7,8,9,10\}$ is the sample space for an experiment with events: $E = \{1,3,5\}$; $F = \{3,5,7,9\}$; $G = \{2,4,6,8\}$. Then $(E \cup G) \cap F' =$

(a) $\{1,2,3,4,5,6,7,8,9\}$ (b) $\{1,2,3,4,5,6,8,10\}$ (c) Empty Set (d) $\{3,5\}$ (e) $\{1,2,4,6,8\}$

Exercise 17

Urn I contains 2 Red and 2 Blue marbles and Urn II contains 1 Pink and 1 Blue marbles. An urn is selected at random. Then a marble is randomly drawn from it and placed in the other urn from which we randomly draw a marble. The probability that the second draw yields a Pink marble is

	(a) $\frac{13}{60}$	(b) $\frac{11}{60}$	(c) $\frac{1}{4}$	$(d) \frac{1}{12}$	(e) $\frac{1}{20}$
--	---------------------	---------------------	-------------------	--------------------	--------------------

Exercise 18

On an 8-question, multiple-choice examination, there are 4 choices for each question, only one of which is correct. If a student answers each question in a random fashion, the probability that <u>exactly</u> 3 questions are correct is:

(a) $(4^{-8})(_{8}C_{3})(3^{5})$	(b) $(4^{-8})(3^8)$	(c) $(4^{-8})(_{8}C_{4})(3^{4})$	(d) $(4^{-8})(3)$	(e) $(4^{-8})(_8C_3)$

Exercise 19

Bill Gates lives in a town of 1,000 people. He is worth \$10 billion and each one of the other 999 people is worth 0 \$. In this town:

- (a) the median personal wealth is not representative
- (b) the mean for the personal wealth is equal to 1,000,000
- (c) the mode for the personal wealth is representative and is equal to 1,000
- (d) the mode for the personal wealth is equal to 0 and is not representative
- (e) the median personal wealth is equal to 0

Six hundred investors were surveyed to determine whether a person who uses a full-service stockbroker has better performance in his or her investment portfolio than one who uses a discount broker. In general, discount brokers usually offer no investment advice to their clients, whereas full-service brokers usually offer help in selecting stocks but charge larger fees. The data, based on the last 12 months, are given in the below table. Let E denote the event of having a full-service broker and let F denote the event of having an increase in portfolio value. Then:

	Increase	Decrease	Total
Full Service	320	80	400
Discount	160	40	200
Total	480	120	600

(a) E and F are dependent
(b) E and F are independent
(c) E and F are mutually exclusive
(d) P(E) = P(F | E)
(e) P(F) = P(E | F)

Exercise 21

In an article comparing national mathematics examinations in the U.S. and some European countries, a researcher found the results, shown in the below table, for the number of minutes allowed for each open-ended question.

France	10
Germany	15
Netherlands	11
Portugal	12
Scotland	5
US	6

The number of data values within one standard deviations of the mean is:

(a) 2 (b) 3 (c) 4 (d) 5 (e) 6

Exercise 22

A basket contains 10 balls, each of which shows a number. Five balls show 3, two balls show 2, and three balls show 1. A ball is selected at random. If X is the number that shows, then E(X) =

(a)
$$\frac{3}{5}$$
 (b) 1 (c) $\frac{7}{5}$ (d) $\frac{9}{5}$ (e) $\frac{11}{5}$

A fast-food chain estimates that if it opens a restaurant in a shopping center, the probability that the restaurant is successful is 0.65. A successful restaurant earns an annual profit of \$75,000; a restaurant that is not successful loses \$20,000. The expected gain to the chain if it opens a restaurant in a shopping center is:

(a) \$41,000 (b) \$41,750 (c) \$48,000 (d) \$48,750 (e) \$55,000

Exercise 24

Suppose X is a binomially distributed random variable with $\mu = 2$ and $\sigma^2 = \frac{3}{2}$. Then P(X = 2) =

(a) $1 - P(X \le 1)$ (b) $\frac{(3^2)(7)}{4^7}$ (c) $\frac{(3^2)(14)}{4^7}$ (d) $\frac{(3^6)(7)}{4^7}$ (e) $\frac{(3^6)(14)}{4^7}$

Exercise 25

A biased coin is tossed three times in succession. The probability of tails on any toss is $\frac{4}{5}$. The probability that two or three <u>heads</u> occur is:

(a) 0.008 (b) 0.096 (c) 0.104 (d) 0.896 (e) 0.904

----- Good Luck ------