King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 131 (Term 143)

Exam 1 (Duration: 90 minutes)

Student Name______Student ID: ______

Question	Score
1	\16
2	\16
3	\16
4	\16
5	\16
6	\20
Total Score	\100

Exercise 1 (16 points)

A small business predicts its revenue growth by a straight-line method with a slope of **10,000 SR** per year. In its tenth year, it had revenues of **110,000 SR**. Find an equation that describes the relationship between the revenue R and the number of years T since it opened for business.

Exercise 2 (16 points)

A marketing firm estimates that n months after the introduction of a client's new product, f(n) thousand households will use it, where

$$f(n) = \frac{6}{5}n(10-n), 0 \le n \le 10.$$

Estimate the maximum number of households that will use the product.

Exercise 3 (16 points)

Supply and demand equations for a certain product are, respectively, 3q - 200p + 1800 = 0and q + 100p - 1800 = 0. Where *p* represents the price per unit in Riyals and *q* represents the number of units sold per time period. Find the equilibrium price when a tax of **0.27 SR** per unit is imposed on the supplier.

Exercise 4 (16 points)

A produce grower is purchasing fertilizer containing three nutrients: **A**, **B**, and **C**. The minimum monthly requirements are **320** units of **A** and **400** of **B**; and the maximum monthly requirements are **800** units of **C**. There are two popular blends of fertilizer on the market. Blend **I**, costing **10** SR a bag, contains **2** units of **A** and **1** unit of **B**. Blend **II**, costing **20** SR a bag, contains **2** units of **B** and **20** units of **C**. How many bags of each blend should the grower buy each month to minimize the cost of meeting the nutrient requirements? Formulate the problem (Do not solve it).

Exercise 5 (16 points)

A firm produces three products **A**, **B**, and **C** that require processing by three machines **I**, **II**, and **III**. The time in hours required for processing one unit of each product is given by the following table:

	Α	В	С
Machine I	4	2	1
Machine II	2	1	1
Machine III	3	1	3

Machine I is available for **380** hours, Machine II is available **210** hours, and Machine III is available for **350** hours. <u>Use matrix reduction method</u>, to find how many units of each product should be produced to make use of all the available time on the machines.

Let	Reduced Matrix: (Show your work on the back of this page)
x =	
γ =	
z =	
System of Equations:	
	Solution:
	x =
Augmented Matrix:	y =
	z =

Exercise 6 (20 points)

Use the dual and simplex method to solve the following problem: $x_2 + x_2 > 5$

Minimize
$$Z = 2x_1 + 5x_2 + 3x_3$$
 subject to
$$\begin{cases} x_2 + x_3 \ge 5 \\ x_1 + x_2 + x_3 \ge 4 \\ x_1 - x_2 - x_3 \le 1 \\ -x_1 + x_3 \le 3 \end{cases}$$

Duai Problem:	Final Tableau (Show your work on the back of this
	page)
Initial Tableau:	Solution of the Dual Problem:
	Solution of the Initial Problem: