- **8.2.1.** Let X have the pmf $f(x;\theta) = \theta^x (1-\theta)^{1-x}$, x = 0, 1, zero elsewhere. We test the simple hypothesis $H_0: \theta = \frac{1}{4}$ against the alternative composite hypothesis $H_1: \theta < \frac{1}{4}$ by taking a random sample of size 10 and rejecting $H_0: \theta = \frac{1}{4}$ if and only if the observed values x_1, x_2, \ldots, x_{10} of the sample observations are such that $\sum_{i=1}^{10} x_i \leq 1$. Find the power function $\gamma(\theta)$, $0 < \theta \leq \frac{1}{4}$, of this test.
- **8.2.2.** Let X have a pdf of the form $f(x;\theta) = 1/\theta$, $0 < x < \theta$, zero elsewhere. Let $Y_1 < Y_2 < Y_3 < Y_4$ denote the order statistics of a random sample of size 4 from this distribution. Let the observed value of Y_4 be y_4 . We reject $H_0: \theta = 1$ and accept $H_1: \theta \neq 1$ if either $y_4 \leq \frac{1}{2}$ or $y_4 > 1$. Find the power function $\gamma(\theta)$, $0 < \theta$, of the test.
- **8.2.3.** Consider a normal distribution of the form $N(\theta,4)$. The simple hypothesis $H_0: \theta=0$ is rejected, and the alternative composite hypothesis $H_1: \theta>0$ is accepted if and only if the observed mean \overline{x} of a random sample of size 25 is greater than or equal to $\frac{3}{5}$. Find the power function $\gamma(\theta)$, $0 \le \theta$, of this test.
- **8.2.4.** Consider the distributions $N(\mu_1, 400)$ and $N(\mu_2, 225)$. Let $\theta = \mu_1 \mu_2$. Let \overline{x} and \overline{y} denote the observed means of two independent random samples, each of size n, from these two distributions. We reject $H_0: \theta = 0$ and accept $H_1: \theta > 0$ if and only if $\overline{x} \overline{y} \ge c$. If $\gamma(\theta)$ is the power function of this test, find n and c so that $\gamma(0) = 0.05$ and $\gamma(10) = 0.90$, approximately.
- **8.2.5.** If in Example 8.2.2 of this section $H_0: \theta = \theta'$, where θ' is a fixed positive number, and $H_1: \theta < \theta'$, show that the set $\left\{ (x_1, x_2, \dots, x_n) : \sum_{i=1}^{n} x_i^2 \le c \right\}$ is a uniformly most powerful critical region for testing H_0 against H_1 .
- **8.2.6.** If, in Example 8.2.2 of this section, $H_0: \theta = \theta'$, where θ' is a fixed positive number, and $H_1: \theta \neq \theta'$, show that there is no uniformly most powerful test for testing H_0 against H_1 .
- **8.2.7.** Let X_1, X_2, \ldots, X_{25} denote a random sample of size 25 from a normal distribution $N(\theta, 100)$. Find a uniformly most powerful critical region of size $\alpha = 0.10$ for testing $H_0: \theta = 75$ against $H_1: \theta > 75$.
- **8.2.8.** Let X_1, X_2, \ldots, X_n denote a random sample from a normal distribution $N(\theta, 16)$. Find the sample size n and a uniformly most powerful test of $H_0: \theta = 25$ against $H_1: \theta < 25$ with power function $\gamma(\theta)$ so that approximately $\gamma(25) = 0.10$ and $\gamma(23) = 0.90$.
- **8.2.9.** Consider a distribution having a pmf of the form $f(x;\theta) = \theta^x (1-\theta)^{1-x}$, x = 0, 1, zero elsewhere. Let $H_0: \theta = \frac{1}{20}$ and $H_1: \theta > \frac{1}{20}$. Use the central limit theorem to determine the sample size n of a random sample so that a uniformly most powerful test of H_0 against H_1 has a power function $\gamma(\theta)$, with approximately $\gamma(\frac{1}{20}) = 0.05$ and $\gamma(\frac{1}{10}) = 0.90$.

- 8.2.10. Illustrative Example 8.2.1 of this section dealt with a random sample of size n=2 from a gamma distribution with $\alpha=1,\ \beta=\theta$. Thus the mgf of the distribution is $(1-\theta t)^{-1},\ t<1/\theta,\ \theta\geq 2$. Let $Z=X_1+X_2$. Show that Z has a gamma distribution with $\alpha=2,\ \beta=\theta$. Express the power function $\gamma(\theta)$ of Example 8.2.1 in terms of a single integral. Generalize this for a random sample of size n.
- **8.2.11.** Let X_1, X_2, \ldots, X_n be a random sample from a distribution with pdf $f(x;\theta) = \theta x^{\theta-1}$, 0 < x < 1, zero elsewhere, where $\theta > 0$. Find a sufficient statistic for θ and show that a uniformly most powerful test of $H_0: \theta = 6$ against $H_1: \theta < 6$ is based on this statistic.
- **8.2.12.** Let X have the pdf $f(x;\theta) = \theta^x (1-\theta)^{1-x}$, x = 0, 1, zero elsewhere. We test $H_0: \theta = \frac{1}{2}$ against $H_1: \theta < \frac{1}{2}$ by taking a random sample X_1, X_2, \ldots, X_5 of size n = 5 and rejecting H_0 if $Y = \sum_{i=1}^{n} X_i$ is observed to be less than or equal to a constant c.
 - (a) Show that this is a uniformly most powerful test.
 - (b) Find the significance level when c = 1.
 - (c) Find the significance level when c = 0.
- **8.2.13.** Let X_1, \ldots, X_n denote a random sample from a gamma-type distribution with $\alpha = 2$ and $\beta = \theta$. Let $H_0: \theta = 1$ and $H_1: \theta > 1$.
 - (a) Show that there exists a uniformly most powerful test for H₀ against H₁, determine the statistic Y upon which the test may be based, and indicate the nature of the best critical region.
 - (b) Find the pdf of the statistic Y in Part (a). If we want a significance level of 0.05, write an equation which can be used to determine the critical region. Let γ(θ), θ ≥ 1, be the power function of the test. Express the power function as an integral.

Example 8.2.1. Consider the pdf

$$f(x;\theta) = \left\{ \begin{array}{ll} \frac{1}{\theta} e^{-x/\theta} & 0 < x < \infty \\ 0 & \text{elsewhere,} \end{array} \right.$$

of Exercises 8.1.2 and 8.1.3. It is desired to test the simple hypothesis $H_0: \theta = 2$ against the alternative composite hypothesis $H_1: \theta > 2$. Thus $\Omega = \{\theta: \theta \geq 2\}$. A random sample, X_1, X_2 , of size n = 2 will be used, and the critical region is $C = \{(x_1, x_2): 9.5 \leq x_1 + x_2 < \infty\}$. It was shown in the example cited that the significance level of the test is approximately 0.05 and the power of the test when $\theta = 4$ is approximately 0.31. The power function $\gamma(\theta)$ of the test for all $\theta \geq 2$ will now be obtained. We have

$$\gamma(\theta) = 1 - \int_0^{9.5} \int_0^{9.5 - x_2} \frac{1}{\theta^2} \exp\left(-\frac{x_1 + x_2}{\theta}\right) dx_1 dx_2
= \left(\frac{\theta + 9.5}{\theta}\right) e^{-9.5/\theta}, \quad 2 \le \theta.$$

For example, $\gamma(2) = 0.05$, $\gamma(4) = 0.31$, and $\gamma(9.5) = 2/e = 0.74$. It is shown (Exercise 8.1.3) that the set $C = \{(x_1, x_2) : 9.5 \le x_1 + x_2 < \infty\}$ is a best critical region of size 0.05 for testing the simple hypothesis $H_0 : \theta = 2$ against each simple hypothesis in the composite hypothesis $H_1 : \theta > 2$.