KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS & STATISTICS DHAHRAN, SAUDI ARABIA

STAT 502: Statistical Inference

Semester 142 Final Exam (Subjective) Saturday May 23, 2015 8:00 – 10:00 pm

Q.No.1:- (5+5+5+5=20 points)

(a) If k trials conducted are of Bernoullian type following binomial distribution, find the maximum likelihood estimate of p.

(b) Find the maximum likelihood estimate of the parameter θ of the following distribution,

$$f(x;\theta) = \frac{1}{2}e^{-|x-\theta|}$$

 $-\infty < x < \infty$ and $-\infty < \theta < \infty$.

(c) Estimate the parameter β of the distribution $f(x;\beta) = \beta e^{-\beta x}$ for $0 \le x \le \infty$, by the method of moments.

(d) Find Bayes estimator of the single parameter θ of the Poisson distribution $(f(x; \theta) = \frac{e^{-\theta}\theta^x}{x!}$ for x = 0, 1, 2, ..., n) when it is known that the prior distribution of θ is gamma distribution $(g(\theta) = \frac{\beta^{\alpha}}{\Gamma \alpha} \theta^{\alpha-1} e^{-\beta\theta}$ for $0 \le \theta \le \infty$).

Q.No.2:- (7 points) Consider a distribution having a pmf of the form $f(x;\theta) = \theta^x (1-\theta)^{1-x}$ for x = 0, 1. Let $H_0: \theta = \frac{1}{20}$ against $H_1: H_0: \theta > \frac{1}{20}$. Use the central limit theorem to determine the sample size n of a random sample so that the uniformly most powerful test of H_0 against H_1 has a power function $\gamma(\theta)$, with approximately $\gamma\left(\frac{1}{20}\right) = 0.05$ and $\gamma\left(\frac{1}{10}\right) = 0.90$.

Q.No.3:- (8 points) Let $X_1, X_2, ..., X_n$ denote a random sample from a gamma distribution ($f(x; \theta) = \frac{\beta^{\alpha}}{\Gamma \alpha} x^{\alpha-1} e^{-\beta x}$ for x > 0, $\mu = \alpha/\beta$ and $\sigma^2 = \alpha/\beta^2$) with $\alpha = 2$ and $\beta = \theta$. Let $H_0: \theta = 1$ against $H_1: \theta > 1$. Show that the likelihood ratio test leads to the same critical region as that given by the Neyman-Pearson lemma. Also find the value of *k* using $\alpha = 0.05$.

With the Best Wishes