KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS & STATISTICS DHAHRAN, SAUDI ARABIA

STAT 502: Statistical Inference

Semester 142 Second Major Exam (Objective) Wednesday May 20, 2015 7:00 - 7:30 pm

1. If the density function of a random variable is $f(x;\theta) = \theta e^{-\theta x}$ for x > 0 (with mean $\mu = 1/\theta$ and variance $\sigma^2 = 1/\theta^2$). Then 95% confidence limits for large sample size are:

(a)
$$\left(1 \pm \frac{1.96}{\sqrt{n}}\right) \bar{x}$$

(a)
$$\left(1 \pm \frac{1.96}{\sqrt{n}}\right)\bar{x}$$
 (b) $\left(1 \pm \frac{1.96}{\sqrt{n}}\right) /_{\bar{x}}$ (c) $\left(\frac{1 \pm 1.96}{\sqrt{n}}\right)\bar{x}$ (d) $\left(\frac{1 \pm 1.96}{\sqrt{n}}\right) /_{\bar{x}}$

(c)
$$\left(\frac{1\pm 1.96}{\sqrt{n}}\right)\bar{\chi}$$

$$(d) \left(\frac{1\pm 1.96}{\sqrt{n}}\right) / \bar{\chi}$$

(d) none of above

(e) both (a) and (c)

(f) both (b) and (d) (g) all of (a), (b), (c) and (d)

2. Formula for 95% confidence limits for the variance of population $N(\mu, \sigma^2)$, when μ is unknown, is:

(a)
$$P\left[\chi_{1-\alpha/2}^2 \le \frac{ns^2}{\sigma^2} \le \chi_{\alpha/2}^2\right] = 1 - \alpha$$

(b))
$$P\left[\frac{ns^2}{\chi_{\alpha/2}^2} \le \sigma^2 \le \frac{ns^2}{\chi_{1-\alpha/2}^2}\right] = 1 - \alpha$$

(c)
$$P\left[\frac{ns^2}{\chi_{1-\alpha/2}^2} \ge \sigma^2 \ge \frac{ns^2}{\chi_{\alpha/2}^2}\right] = \alpha$$

(d) none of above

(e) both (a) and (b)

(f) all of (a), (b) and (c)

3. Tick the quantities upon which power of the test depends:

- (a) type I error
- (b) type II error
- (c) sample size

- (d) sample mean
- (e) sample variance
- (f) null and alternative hypotheses

- (g) population mean
- (h) population variance

4. While testing the equality of more than two population means, we use F statistic which is the ratio of two variances. The larger variance in this variance ratio is taken:

- (a) in the denominator
- (b) in the numerator

(c) either way

(d) none of above

5. Let X represents a random variable following $N(\mu, \sigma^2 = 4)$. The hypotheses are H_0 : $\mu = 2$ against H_1 : $\mu = 1/2$. A sample of size 25 is selected randomly and H_0 is rejected if sample mean is less than 1.

Then the size of type I error is equal to ______ and the power of the test is equal to _____.

6. Define simple and composite hypotheses. Give an example of both.
7. What is the difference between most powerful (MP) test and uniformly most powerful (UMP) test?