KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS AND STATISTICS Term 142

STAT 310 Introduction to Linear Regression Final Exam

May 18, 2015

Name: _____ ID #:_____

Important Note:

- Show all your work including formulas, intermediate steps and final answer
- In questions requiring a test of a hypothesis, it is important to specify the null and alternative hypotheses, the testing procedure, the decision and the conclusion.

Question No	Full Marks	Marks Obtained
1	18	
2	17	
3	4	
4	6	
Total	45	

1) Answer the following:

- i) Write down a second order hierarchical model in three variables. (2 pts.)
- ii) Name two drawback of using a polynomial model relative to using a linear model with transformed variables. Explain. (4 pts.)

iii) In the quadratic model $y_i = \beta_0 + \beta_1 x_i + \beta_{11} x_i^2 + \varepsilon_i$, does testing for the quadratic effect necessarily establish that a linear function is appropriate? Explain. (2 pts.)

iv) Explain what the DFBETAS, DFFITS, and Cook's Distance are and what are they used for? (6 pts.)

vi) Explain the backward elimination procedure. (2 pts.)

2) Given the following data

X	0	0	1	1	2	2	3	3	4	4	5	5	6	6
Y	508.1	498.4	568.2	577.3	651.7	657.0	713.4	697.5	755.3	758.9	787.6	792.1	841.4	831.8

The analyst fit a second order model $y_i = \beta_0 + \beta_1 x_i + \beta_{11} x_i^2 + \varepsilon_i$ and got the following results

Coefficient	Estimated Value	Standard Error
β_0	705.474	3.208
β_1	54.893	1.050
β_{11}	-4.249	0.606

i) Write down the estimated model.

(1 pt.)

ii) Complete the ANOVA Table

ANOVA Table

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square
Regression	171773		
x	168741		
$x^2 x$			
Error			
Total	172453		

iii) Test for lack of fit.

(5 pts.)

iv) Test for quadratic effect in two ways.

(4 pts.)

v) What is the value of the coefficient of determination? Explain its meaning. (2 pts.)

(5 pts.)

3) A researcher fit the following model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_{11} x_{i1}^2 + \beta_{22} x_{i2}^2 + \beta_{12} x_{i1} x_{i2} + \varepsilon_i \qquad i = 1, \dots, 10$$

ANOVA TABLE

Source of Variation	Sum of Squares
Regression	55366
<i>x</i> ₁	18704
$x_{2} x_{1}$	34201
$x_1^2 x_1, x_2$	1646
$x_2^2 x_1, x_2, x_1^2$	285
$x_1x_2 x_1, x_2, x_1^2, x_2^2$	529
Error	5240
Total	60606

Help the researcher test if a first order model is adequate.

(4 pts.)

4) In a production process, the engineer wanted to study the relationship between the amount of product as a function of line speed and production line. He considered the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_{12} x_{i1} x_{i2} + \varepsilon_i$$
 $i = 1, ..., 10$

where

 X_1 denotes the line speed, and

 X_2 is a qualitative variable with two levels, denoting the line.

And got the following fitted model $\hat{Y} = 7.57 + 1.322X_1 + 90.39X_2 - 0.176X_1X_2$

Source of Variation	Sum of Squares
Regression	169165
x_1	149661
$x_{2} x_{1}$	18694
$x_1 x_2 x_1, x_2$	810
Error	9904
Total	179069

i) Test if the regression lines are identical. (3 pts.)

ii) Test if the regression lines are parallel. (3 pts.)