Confidence Interval Estimation – Two-Sample Problem

1. $100(1 - \alpha)$ % Confidence Interval for the difference in the means $\mu_1 - \mu_2$ using two independent samples.

Normal Populations or Large Samples

If
$$\sigma_1$$
 and σ_2 are known: $\left(\overline{x_1} - \overline{x_2}\right) \pm z_{\alpha/2} \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}$
If σ_1 and σ_2 are unknown: $\left(\overline{x_1} - \overline{x_2}\right) \pm z_{\alpha/2} \sqrt{\frac{{s_1}^2}{n_1} + \frac{{s_2}^2}{n_2}}$

2. 100(1 – α)% Confidence Interval for the difference in the means $\mu_1 - \mu_2$ using two independent small samples

Two Normal Populations with <u>unknown</u> equal variances, $\sigma_1^2 = \sigma_2^2$,

$$\left(\overline{x}_1 - \overline{x}_2\right) \pm t_{\underline{\alpha}, f} \quad s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}},$$

where
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

and the number of degrees of freedom $f = n_1 + n_2 - 2$.

3. $100(1 - \alpha)\%$ Confidence Interval for the difference in the means $\mu_1 - \mu_2$ using two independent small samples

Two Normal Populations with unknown equal variances,

$$\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\frac{\alpha}{2},\nu} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}$$

Where the number of degrees of freedom

$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}$$

4. $100(1 - \alpha)$ % Confidence Interval for the difference in the means of two related populations

$$\overline{d} \pm t_{\frac{\alpha}{2}, n-1} \frac{s_d}{\sqrt{n}}$$

Where
$$\overline{d} = \frac{\sum_{i=1}^{n} d_i}{n}$$
, $d_i = x_{1i} - x_{2i}$, and $s_d = \sqrt{\frac{\sum_{i=1}^{n} (d_i - \overline{d})^2}{n-1}}$

5. Large Samples $(1-\alpha)100\%$ Confidence Interval for the difference between two population proportions, $\pi_1 - \pi_2$

$$(p_1 - p_2) \pm z_{\alpha/2} \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

Where $p_1 = \frac{x_1}{n_1}$, $p_2 = \frac{x_2}{n_2}$ are the sample proportions.

Assumptions:

1. $n_1 \pi_1 \ge 5$, $n_1(1-\pi_1) \ge 5$ 2. $n_2 \pi_2 \ge 5$, $n_2(1-\pi_2) \ge 5$