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(1) Consider the equation 
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where 21   and α is a constant. Derive a variational formulation for this 

problem and give conditions on α and f  (if any are required) that guarantee it has a 

unique solution in 1H . (Hint: multiply by v and integrate by parts, converting the v
u
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term to uv using the boundary condition.) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(2) Consider the pure advection equation 

(2.1)   0,0,  ,0  ctxcuu xt  
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Discretized using a 4-point stencil 
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 (a) Find the only  )( 22 kh   accurate 

scheme for (1.1) in the form (1.2) 

 

 (b)  Show that this scheme is 

unconditionally stable. 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(3) Consider the equation 

(2.1)   0,0,  ,0  ctxcuu xt  

with   
)()0,( xwxu   

It is easy to show that the solution is given by: 
)(),( ctxvtxu  . 

(a) State the Courant-Friedrichs-Lewy condition (CFL) 

(b) Give an example of a scheme which satisfy CFL condition 

(c) Give an example of a scheme whch does not satisfy CFL condition 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(4) Consider the following initial-boundary value problem for Burger’s equation 

 

Seek ),( txuu   defined on ],0[]1,0[ T  such that 
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Douglas and B.F. Jones proposed the following predictor-corrector method for the 

solution of nonlinear parabolic equations, which in our case has the form: 
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Corrector: 
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 With   JjxvU jj  0     ),(0
 

 So we predict  n

jÛ    by (1)  and then we correct 1n

jU   by  (2). Douglas and Jones 

showed that for k sufficiently small, ).(),(max 22
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 (a) Verify that for the solution of the above predictor-corrector scheme, one has to 

solve two linear tridiagonal systems of equations per time step, one for the 

predictor and one for the corrector. [ Hint: write these two system in matrix form 

then the two coefficient matrices are tridiagonal] 

  
  



(5) Consider the equation 

)1,0()1,0(  ,)( 2  fuubua  

with   
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Where the coefficients  a = a(x,y), b = b(x,y) are smooth and such that 
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(a) Use your knowledge in finite element methods to suggest a weak formulation 

for this problem. 

(b) Suggest a discrete space suitable for this problem [ give a reason for selecting 

this discrete space ] 

(c) After the discretization, Write the resulting algebraic equations in matrix form 

(note that the system is nonlinear system of equations) 

(d)  Suggest a method to solve the nonlinear system in (c). 

(e) What properties does the Jacobian matrix in (c) has? Symmetric, positive 

definite, tridagonal matrix, block-tridaiagonal, diagonally dominant, …… 

(f) Suggest a method to solve a linear system with Jacobian matrix in (e) as a 

coefficient matrix of the system [ give a reason for selecting your method ] 

  

  

  
 


