King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 572, Exam-II Semester II, 2015 (142)

Name:	
ID :	

Q		Points	
1		40	
2		40	
3		40	
4		40	
Choose one only (5 or 6)			
5		40	
6		40	
Total		200	

(1) Consider the following scheme

$$\frac{U_{j}^{n+1} - U_{j}^{n-1}}{2k} = c \frac{U_{j+1}^{n} - U_{j}^{n+1} - U_{j}^{n-1} + U_{j-1}^{n}}{h^{2}}$$

which approximate the parabolic equation $u_t = cu_{xx}$ Show that the scheme is of order $O(h^2) + O(k^2) + O(\left(\frac{k}{h}\right)^2)$ (2) Consider the following scheme

$$(1+\theta)\frac{U_{j}^{n+1}-U_{j}^{n}}{k}-\theta\frac{U_{j}^{n}-U_{j}^{n-1}}{k}=c\frac{U_{j+1}^{n+1}-2U_{j}^{n+1}+U_{j-1}^{n+1}}{h^{2}}$$

(where $\theta \ge 0$) which approximate the parabolic equation $u_t = cu_{xx}$ Use **Fourier method** to show that the scheme is always stable (3) Consider the problem

$$-\nabla \cdot (a\nabla u) + cu = f, \text{ in } \Omega$$
$$\frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega_N, \quad u = 0 \text{ on } \partial \Omega_D$$

where $a(x) \ge a_0 > 0, c(x) \ge c_0 > 0$ $\partial \Omega = \partial \Omega_D \cup \partial \Omega_N$

Formulate a finite element problem and then prove error estimate.

(4) Consider the following problems

 $(u_t, \varphi) + (u, \varphi) = (f, \varphi) \forall \varphi \in H_0^1$ (1) u(0) = v

$$(u_{h,t},\chi) + (u_h,\chi) = (f,\chi) \,\forall \chi \in S_h \qquad (2)$$
$$u_h(0) = v_h$$

Prove the following theorem

Theorem 10.1 Let u_h and u be the solutions of (2) and (1). Then

$$\|u_h(t) - u(t)\| \le \|v_h - v\| + Ch^2 \left(\|v\|_2 + \int_0^t \|u_t\|_2 ds \right)$$
 for $t \ge 0$

(5) consider the following " θ -method " $(-1 \le \theta \le 1)$, for the convection diffusion problem $\varepsilon > 0, a(x) > 0$

$$-\varepsilon u_{xx} + a(x)u_x = f(x), \quad 0 < x < 1, \quad u(0) = u(1) = 0,$$

given by

$$-\varepsilon \frac{U^{n+1} - 2U^n + U^{n-1}}{h^2} + a_n \left[\theta \frac{U^n - U^{n-1}}{h} + (1 - \theta) \frac{U^{n+1} - U^n}{h} \right] = f_n$$

Find a condition on $\mathcal{E}, h, a_n, \theta$ which is necessary and sufficient for the scheme to be of positive scheme. Represent this as a stencil. (6) Consider the Dirichlet problem (4.9)

$$-\Delta u = f$$
 in $\Omega = (0,1) \times (0,1)$, with $u = 0$ on $\partial \Omega$

with f(x, y) = x + y

Take h = 1/4, and set up the linear system arising from the 5 point approximation [DO NOT SOLVE THE LINEAR SYSTEM]