King Fahd University of Petroleum & Minerals Department of Math. & Stat.

Math 569 - Final Exam (142)

======================================	ID #	
	Problem 1	/10
	$\begin{array}{c} \\ \text{Problem } 2 \end{array}$	/10
	$\begin{array}{c} \\ \text{Problem } 3 \end{array}$	/5
	 Problem 4	/10
	 Problem 5	/10
	Total	/45 /37

Problem # 1. (10 marks) In \mathbb{R}^2 , let

$$u(x,y) = \begin{cases} (x^2 + y^2)^{1/4}, & x^2 + y^2 \le 1\\ (x^2 + y^2)^{-3/2}, & x^2 + y^2 > 1 \end{cases}$$

- a) Check that $u \in H^1(\mathbb{R}^2)$. b) Let v(x) = u(x, 0). Check if $v \in H^1(\mathbb{R})$ and what can you conclude? (Notice that u is continuous in \mathbb{R}^2)

Problem # 2. (10 marks) Let Ω be a C^1 bounded domain of \mathbb{R}^N . On $H^1_0(\Omega)$, we define the bilinear form

$$a(u,v) = \int_{\Omega} \sum_{i,j=1}^{N} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} - c\left(\int_{\Omega} u\right) \left(\int_{\Omega} v\right),$$

where c > 0 and $a_{ij} \in L^{\infty}(\Omega)$ satisfying, for some $c_0 > 0$,

$$\sum_{i,j=1}^{N} a_{ij}(x)\xi_i\xi_j \ge c_0|\xi|^2, \qquad a.e. \ x \in \Omega \text{ and } \forall \xi \in \mathbb{R}^N$$

i) Show that a is bounded and find a condition on c so that a is coercive. ii) In such a case, show that there exists a unique $u \in H_0^1(\Omega)$ satisfying

$$a(u,v) = \int_{\Omega} fv, \qquad \forall v \in H_0^1(\Omega),$$

where $f \in L^2(\Omega)$.

Problem # 3. (5 marks) Let Ω be a C^3 bounded domain of \mathbb{R}^N . Show that the problem

$$\begin{cases} \Delta^2 u = f & \text{in } L^2(\Omega) \\ u = \Delta u = 0 & \text{on } \partial\Omega \end{cases}$$

has a unique solution $u \in H_0^1(\Omega) \cap H^4(\Omega)$. **Hint**: You may take $v = \Delta u$.

Problem # 4. (10 marks) Let Ω be a smooth and bounded domain of \mathbb{R}^N and $f \in L^2(\Omega).$

a. Give a weak formulation, in $H^1(\Omega)$, for the problem

$$\begin{cases} u - \Delta u = f & \text{in } \Omega \\ u + \frac{\partial u}{\partial \eta} = 0 & \text{on } \partial \Omega \end{cases}$$

where $\frac{\partial u}{\partial \eta}$ is the outer normal derivative. b. Discuss the existence and uniqueness of a weak solution. c. Show if the weak solution $u \in H^2(\Omega)$ then the boundary condition is satisfied "in some sense" .

Problem # 5. (10 marks) Let Ω be a smooth and bounded domain of \mathbb{R}^2 and $f \in L^2(\Omega)$. Define

$$H^{1}_{*}(\Omega) = \{ v \in H^{1}(\Omega) / \int_{\Omega} v = 0 \}.$$

Suppose that $u \in H^1_*(\Omega)$ satisfies

$$\int_{\Omega} (\nabla u \cdot \nabla v + uv) = \int_{\Omega} fv, \ \forall v \in H^1_*(\Omega)$$

- a. Show that $u \in C(\Omega)$.
- b. If $\int_{\Omega} f = 0$, use the maximum principle theorem to prove that

$$u(x) \le \max\{\sup_{\partial\Omega} u, \sup_{\Omega} f\}, \ \forall x \in \Omega$$

c. Find the equation satisfied by u.