King Fahd University of Petroleum & Minerals Department of Math. & Stat.

Math 569 Exam 1 (142)

Time: 2:00 H

======================================	ID #	
	Problem 1	/10
	Problem 2	/3
	$\begin{array}{c} \\ \text{Problem } 3 \end{array}$	/3
	Problem 4	/11
	 Problem 5	/8
	Total	/35

Problem 1

Let $f \in L^1(\mathbb{R})$ such that

$$\int_{-\infty}^{+\infty} f(t)dt = 0 \text{ and } \int_{0}^{+\infty} f(t)dt \neq 0$$

Define $u_n(x) = nf(nx), x \in I = (-1, 1)$. *i*) With an appropriate change of variable, show that, for any $\varphi \in C([-1, 1])$,

$$\int_{-1}^{1} u_n(x)\varphi(x)dx = \int_{-\infty}^{+\infty} f(t) \left[\varphi(\frac{t}{n}) - \varphi(0)\right] \chi_{[-n,n]}dt + \varphi(0) \int_{-n}^{n} f(t)dt$$

ii) Show that

$$\lim_{n \to +\infty} \int_{-1}^{1} u_n(x)\varphi(x)dx = 0, \ \forall \varphi \in C\left([-1,1]\right).$$

iii) Show that (u_n) is bounded in $L^1(I)$.

iv) Show that there is no subsequence (u_{n_k}) which converges weakly to some u in $L^1(I)$.

Hint: You may argue by contradiction to show that $u \equiv 0$ and continue.

Problem 2. Let $I = (0, +\infty)$ and $g: \mathbb{R} \to \mathbb{R}$ be a C^1 function. If $u \in H^1_0(I)$, show that $v \in H^1_0(I)$, where

$$v(x) = g(u(x)) - g(0).$$

Problem 3 Show that there exist $u_0, u_1 \in L^{p'}((-1, 1)), 1 , satisfying$

$$\int_{-1}^{1} u_0 v + u_1 v' = v(0) + \int_0^1 v, \ \forall v \in W_0^{1,p}(I).$$

Problem 4.

Let I = (0, 1) and define the subspace

$$H^{1}_{*}(I) = \{ v \in H^{1}(I) : \int_{I} v(x) dx = 0 \}$$

- a) Show that $H^1_*(I)$ is closed.
- b) Show there exists a constant $c_* > 0$, for which

$$||v||_2 \le c_* ||v'||_2, \ \forall v \in H^1_*(I).$$

c) Let $f \in L^2(I)$, show that there exists a unique $u \in H^1_*(I)$ such that

$$\int_0^1 u'v' = \int_0^1 fv, \ \forall v \in H^1_*(I).$$

d) Show that $u \in H^2(I)$ and find the equation satisfied by u. **Hint**: Notice that $v = \phi - \int_0^1 \phi \in H^1_*(I), \forall \phi \in H^1(I)$.

Problem 5.

In I = (0, 1), given the problem

$$(P) \quad \begin{cases} -u'' + \int_0^1 u(x) dx = f, & \text{in } I \\ u(0) = u(1) = 0 & , \end{cases}$$

- where $f \in L^3(I)$. *a*) Show that (*P*) has a unique weak solution $u \in H^1_0(I)$. *b*) Show that $u \in W^{2,3}(I)$