King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 531 (Real Analysis)

Term 142

Exam 2 : April, 25, 2015

Time allowed: 2hrs

Question Number	Marks	Maximum Points
1		2
2		2
3		2
4		2
5		2
6		2
7		2
8		4
9		2
Total		20

Math 531-Term-142 (Exam II)Page 1 of 9(Q1) a) Define Lebesgue integral of a simple measurable function f.

b)Find Lebesgue integral of the following functions:

i) f = characteristic function of irrationals

ii) g(x) = 5 for all $x \in C$ (Cantor set).

iii) $f_n : \mathbb{R} \to \{0, 1\}$ given by $f_n(x) = \chi_{[n, n+1),}$

Math 531-Term-142 (Exam II) Page 2 of 9

(Q2) Let f be a bounded and measurable function defined on a set E of finite measure. Then prove that $\left|\int_{E} f\right| \leq \int_{E} |f|$. Math 531-Term-142 (Exam II)

(Q3) Let
$$g(x) = \begin{cases} 0 & x \in \left[0, \frac{1}{2}\right] \\ 1 & x \in \left(\frac{1}{2}, 1\right]. \end{cases}$$

Define $f_{2n}x = g(x)$ and $f_{2n+1}(x) = g(1-x)$ for all $x \in [0,1]$. Check whether or not the conclusion of Fatou's Lemma holds for the sequence $\{f_n\}$.

Math 531-Term-142 (Exam II) Page 4 of 9

(Q4) Let $\{f_n\}$ be a monotone increasing sequence of non-negative measurable functions defined on E and $f = \lim_n f_n$. Then $\int_E f = \lim_n \int_E f_n$ holds. Show by means of an example that this conclusion need not hold for a decreasing sequence $\{f_n\}$.

Math 531-Term-142 (Exam II) Page 5 of 9

(Q5) If f and g are Lebesgue integrable on E, then show that (f + g) is integrable and $\int_E (f + g) = \int_E f + \int_E g.$

(Q6) Let g be integrable and $\{f_n\}$ be a sequence of measurable functions such that $|f_n| \leq g$ on E. If $\lim_{n \to \infty} f_n(x) = f(x)$ a.e. on E, then prove that

$$\int_E \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_E f_n \, .$$

Math 531-Term-142 (Exam II) Page 7 of 9

(Q7) Consider $f(x) = \frac{1}{x}$ on [0,8]. Find truncation function $[f(x)]_n$ for f(x) and use it to calculate the Lebesgue integral of f(x).

Math 531-Term-142 (Exam II) Page 8 of 9

(Q8) (a) If f has period 2π and is integrable on $(-\pi, \pi)$, then find $\lim_{n \to \infty} \int f(x) \sin nx \, dx$.

(b) Justify as briefly as possible:

i) Why
$$\int_0^\infty \frac{\sin x}{x} dx$$
 is not equal to zero.

ii) Why
$$\lim_{n \to \infty} \int f_n(x) \, dx = 0$$
 where $f_n(x) = \frac{\sin\left(\frac{x^2}{n}\right)}{x}, \quad 0 < x < 1 \text{ and } n \ge 1.$

Math 531-Term-142 (Exam II)

- Page 9 of 9
- (Q9) Define "Convergence in measure" for a sequence $\{f_n\}$ of measurable functions to a measurable function f on E. Prove that if $f_n \to f$ in measure, then $\alpha f_n \to \alpha_f$ in measure for any real number α .