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(Q1) Define Lebesgue outer measure m∗ of a set A of real numbers.
Prove that m∗(A+ y) = m∗(A) where y is any real numbers.
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(Q2) If F is a measurable set and m∗(F△G) = 0, then show that G is a measurable set.
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(Q3) If E1 and E2 are measurable sets, then prove that
m(E1 ∪ E2) = m(E1) + m(E2) − m(E1 ∩ E2) where m stands for the Lebesgue
measure.
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(Q4) Let m denote the Lebesgue measure and {En} be a decreasing sequence of measur-

able sets with m(E1) < ∞. Then prove that m

(
∞∩
n=1

En

)
= lim

n→∞
m(En).

Show by means of an example that the condition m(E1) < ∞ is necessary for the
conclusion.
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(Q5) Define Cantor set C. Prove that C is uncountable and m(C) = 0.
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(Q6) Outline the procedure to demonstrate the existence of a non-Lebesgne measurable
set. Hence show by an example that if |f | is measurable function, then f may not
be measurable function.
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(Q7) Let {fn} be a sequence of extended real-valued measurable functions with the same
domain D. Prove that lim fn and {x ∈ D : f1(x) > f2(x)}} are measurable.
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(Q8) Let f : R → R be a Lebesgue measurable function and g : R → R a Borel measurable
function. Prove that gof is a Lebesgue measurable function.
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(Q9) Prove or disprove as briefly as possible:

(a) Every Lebesgue measurable set is a Borel set.

(b) Composition of two Lebesgue measurable functions is a Lebesgue measurable
function.




