King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 455- Syllabus 2014-2015 (Term 142)

Title:	Math 455- Number Theory			
Credit:	3-0-3			
Textbook:	An Introduction to the Theory of Numbers, by Niven, Zuckerman, and			
	Montgomery, 5 th edition, Wiley & Sons, 1991.			
References:	You may use any book on elementary/introductory number theory that			
	is available in KFUPM library.			
Description:	: This is a first course in number theory. It will cover the fundament			
	concepts of number theory: Divisibility, Primes, Congruences,			
	Fermat's and Wilson's Theorems, Pseudoprimes and Carmichael			
	numbers, Solution of polynomial congruences, Primitive roots,			
	Quadratic residues and quadratic reciprocity, Arithmetic functions,			
	Perfect numbers, Pythagorean triangles, Diophantine equations,			
	Cryptography.			
Dronoquisitor	Math 222 on conion standing			

Prerequisite: Math 232 or senior standing.

Learning Outcomes:

Upon the completion of this course, a student should be able to

- 1. Prove some basic results in number theory
- 2. Solve questions about divisibility and primes both theoretically and computationally
- 3. Apply the theorems of Fermat, Euler and Wilson in computing and/or proving some statements in number theory
- 4. Solve different types of congruences
- 5. Use the Chinese Remainder Theorem to solve systems of linear congruences in one variable
- 6. Find primitive roots modulo primes and prime powers
- 7. Use Quadratic Reciprocity Law in computing and proving some statements in number theory
- 8. Work with arithmetic functions both theoretically and computationally
- 9. Solve and prove questions about Pythagorean triples
- 10. Solve some types of Diophantine equations
- 11. demonstrate familiarity with at least one application of Number Theory, such as cryptography.

Grading Policy:

- Exam 1: 20% (6th week)
- Exam 2: 20% (12th week)
- Homework: 20%
- Project: 10%
- Final Exam: 30%

Office Hours:

- Office location: 5-326
- Office Phone Number: 1268
- Time: UTR: 9:00-9:50 & 11:00-11:45 am (or by appointment)
- E-mail: <u>irasasi@kfupm.edu.sa</u>
 Resources: Check Blackboard.

Wishing you all the best,

Ibrahim Al-Rasasi The Course Instructor

Math 455 Syllabus 2014-2015 (142)

Week	Date	Sec.	Topics		
1	Jan. 25-	1.1	Introduction		
	29, 2015	1.2	Divisibility (GCD, LCM)		
2	Feb. 1- 5	1.3	Primes (FTA)		
		1.4	The Binomial Theorem; Fermat's		
			Factorization Method		
3	Feb. 8-12	5.1	The equation ax+by=c		
		2.1	Congruences (Fermat's and Wilson's		
			Theorems, pseudoprimes and Carmichael #)		
4	Feb. 15-19	2.1	Continued		
		2.2	Solutions of Congruences		
5	Feb. 22-26	2.3	The Chinese Remainder Theorem; Euler phi		
			function.		
6	March 1-5		Cryptography (Handout)		
7	March 8-		Cryptography		
	12	2.6	Prime Power Moduli		
8	March 15-	2.7	Prime Modulus		
	19				
Midterm Break: March 22- 26, 2015					
9	March 29-	2.8	Primitive Roots and Power Residues		
	April 2				
10	April 5-9	3.1	Quadratic Residues		
11	April 12-	3.2	Quadratic Reciprocity		
	16	3.3	The Jacobi Symbol		
12	April 19-	4.1	Greatest Integer Function		
	23	4.2	Arithmetic Functions and Perfect numbers		
13	April 26-	4.2	Continued		
	30	4.3	The Mobius Inversion Formula		
14	May 3-7	5.3	Pythagorean Triangles		
			Diophantine Equations (Handout)		
15	May 10-14		Diophantine Equations		
	Final Exam: Monday, May 25, 2015 at 8:00 a.m.				

Homework Problems

Section	Questions numbers
1.2	2, 6(a), 11, 15, 23, 26, 32, 50, 53
1.3	3, 10(b), 11, 19, 26(a), 31, 32, 42, 44, 48
1.4	Appended
5.1	Appended
2.1	A: 2, 6, 7, 8, 14, 32, 33
	B: 13, 18, 19, 20, 28, 30, 45, 47
2.2	3, 5(a, d), 8, 9
2.3	A: 3, 7, 8, 14, 18
	B: 12, 25, 31, 32, 35, 36
2.6	3, 6, 10
2.7	1(b), 2, 3, 4, 10, 11
2.8	A: 2, 4(a), 5, 8(b), 9, 12, 13
	B: 17, 18, 21, 22, 23, 24
3.1	7(a, c, e, g), 9, 13, 19, 23
3.2	2, 6, 7, 10, 16(a), 17
3.3	2(a), (a), 6, 7, 16
4.1	2, 3(a), 7, 9, 16, 30
4.2	3, 5, 9, 12, 13, 17, 21
4.3	2, 3, 5, 6, 8, 18
5.3	2, 3, 5, 8, 11

Note: Homework problems on Cryptography and Diophantine equations will be provided with the handouts.