King Fahd University of Petroleum & Minerals

Department of Mathematics and Statistics

Math 455, Final Exam, Term 142

Part I (75 points)

- 1. Find the last three decimal digits of 101^{404} . (12 points)
- 2. Find the remainder when 50! is divided by 53. (12 points)
- 3. If $x \equiv 1 \mod 5^2$ is a solution of the congruence $x^4 + x 2 \equiv 0 \mod 5^2$, then find the solutions of the congruence $x^4 + x 2 \equiv 0 \mod 5^3$ that lie above the solution $x \equiv 1 \mod 5^2$. (12 points)
- 4. Find all primes p for which the congruence $x^2 \equiv 20 \mod p$ is solvable. (15 points)
- 5. Find all primitive Pythagorean triangles in which the odd leg equals 15. (12 points)
- 6. Solve $49x^4 + 4 = y^3$ in integers. (12 points)

Part II (75 points)

- 7. Prove that $105|n^{25} n$ for all integers *n*. (13 points)
- 8. Prove that $\sigma(n)$ is odd if and only if n is a square or double a square. (14 points)
- 9. Let p be an odd prime number and a be an integer such that $ord_p(a) = 3$. Prove that $(2a + 1)^2 \equiv -3 \mod p$. (14 points)
- 10.Show that the number of zeros at the end of (5n)! is n more than the number of zeros at the end of n!. (14 points)
- 11. (8+12 points)
 - a. Let p be an odd prime. Prove that if there is an integer n such that $p|n^2 2$, then $p \equiv 1 \text{ or } 7 \mod 8$.
 - b. Use part (a), or otherwise, to prove that there are infinitely many primes of the form 8k + 7. (**Hint:** Assume there are finitely many primes of the given form; call them p_1, p_2, \dots, p_n . Now consider the number $N = (p_1 p_2 \dots p_n)^2 2$.)

All the best,