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Department of Mathematics and Statistics 

Math 455, Exam I, Term 142 

Part I (50 points) 

1. Show that the square of any integer takes one of the following forms 5𝑙, 5𝑙 +

1, 𝑜𝑟 5𝑙 + 4, where 𝑙 is some integer. 

2. Solve the following system in positive integers: (5𝑥, 3𝑦) = 6, 3𝑥 + 2𝑦 = 50. 

3. Find all possible values of 𝜋(𝑛 + 3) − 𝜋(𝑛), where 𝑛 is a positive integer. 

4. Use Fermat’s Factorization Method to find nontrivial factors of 5453.   

5. Solve the linear equation 373𝑥 − 122𝑦 = 3 in integers. 

 

Part II (50 points) 

6. Show that 𝑛2|(𝑛 + 1)𝑛 − 1 for any positive integer 𝑛. 

7. Let 𝑝𝑘  be the 𝑘𝑡ℎ prime. Show that 1 + 𝑝1𝑝2 ⋯ 𝑝𝑛 is not a perfect square for any 

positive integer 𝑛.  

8. Let 𝑛 > 2 be a positive integer. Prove that if one of the two numbers 2𝑛 −

1, 2𝑛 + 1 is prime, then the other is composite. 

9. Prove that if (𝑎, 𝑏) = 1, then (𝑎 − 𝑏, 𝑎3 + 𝑏3) = 1 𝑜𝑟 2.  

10. Let 𝑀 be a positive common multiple of the nonzero integers 𝑎 and 𝑏. Prove 

that 𝑀 = [𝑎, 𝑏] if and only if (
𝑀

𝑎
,

𝑀

𝑏
) = 1.  

 

All the best, 

Ibrahim Al-Rasasi 

 

 

 

 

 



Solutions 

 

Question # 1: By the division algorithm, any integer 𝑛 takes one of the following 

forms: 5𝑘, 5𝑘 + 1, 5𝑘 + 2, 5𝑘 + 3, 5𝑘 + 4. Now 

𝑛 = 5𝑘 ⇒ 𝑛2 = 25𝑘2 = 5𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑙 = 5𝑘2 

𝑛 = 5𝑘 + 1 ⇒ 𝑛2 = 25𝑘2 + 10𝑘 + 1 = 5𝑙 + 1, 𝑤ℎ𝑒𝑟𝑒 𝑙 = 5𝑘2 + 2𝑘 

𝑛 = 5𝑘 + 2 ⇒ 𝑛2 = 25𝑘2 + 20𝑘 + 4 = 5𝑙 + 4, 𝑤ℎ𝑒𝑟𝑒 𝑙 = 5𝑘2 + 4𝑘 

𝑛 = 5𝑘 + 3 ⇒ 𝑛2 = 25𝑘2 + 30𝑘 + 9 = 5𝑙 + 4, 𝑤ℎ𝑒𝑟𝑒 𝑙 = 5𝑘2 + 6𝑘 + 1 

𝑛 = 5𝑘 + 4 ⇒ 𝑛2 = 25𝑘2 + 40𝑘 + 16 = 5𝑙 + 1, 𝑤ℎ𝑒𝑟𝑒 𝑙 = 5𝑘2 + 8𝑘 + 3 

We conclude that the square of any integer takes only one of the following forms 

5𝑙, 5𝑙 + 1, 𝑜𝑟 5𝑙 + 4, where 𝑙 is some integer. 

 

Question # 2: As (5𝑥, 3𝑦) = 6, then 6|5𝑥 𝑎𝑛𝑑 6|3𝑦 and hence 6|𝑥 𝑎𝑛𝑑 2|𝑦. This 

implies that 𝑥 = 6𝑘 𝑎𝑛𝑑 𝑦 = 2𝑙 for some positive integers 𝑘 𝑎𝑛𝑑 𝑙. Substituting in 

the equation 3𝑥 + 2𝑦 = 50 and simplifying, we get the equation 9𝑘 + 2𝑙 = 25. As 

𝑘 𝑎𝑛𝑑 𝑙 are positive integers, then 25 = 9𝑘 + 2𝑙 > 9𝑘. Thus 𝑘 < 25/9 and hence 

𝑘 = 1 𝑜𝑟 2. The corresponding values of 𝑙 are 8 and 7/2 respectively. As 𝑘 𝑎𝑛𝑑 𝑙 

are positive integers, then (𝑘, 𝑙) = (1,8) and hence (𝑥, 𝑦) = (6,16).     

 

Question # 3: Note that  𝜋(𝑛 + 3) − 𝜋(𝑛) equals the number of primes in the 

interval (𝑛, 𝑛 + 3], or, equivalently, the number of primes in the set {𝑛 + 1, 𝑛 +

2, 𝑛 + 3}. As at least one of these three consecutive positive integers is even (and 

greater than 2), then the number of primes in the set is at most 2. It can be 2 (for 

example, {2, 3, 4} ), and it can be 1 (for example, {4, 5, 6} ), and it can be zero (for 

example, {8, 9, 10} ). We conclude that the possible values of 𝜋(𝑛 + 3) − 𝜋(𝑛) are 

0, 1, and 2.   

 



Question # 4: As √𝑛 = √5453 ≈ 73.84, then we start by taking 𝑥 = 74. Checking 

the values 𝑥 = 74, 75, 76, ⋯, we see that 𝑥2 − 𝑛 is a perfect square when 𝑥 = 87 

(at the 14th  step): 872 − 𝑛 = 2116 = 462. Thus 

𝑛 = 872 − 462 = (87 − 46)(87 + 46) = 41 × 133. 

Noticing that 133 = 7 × 19, we get the full prime factorization 

𝑛 = 5453 = 7 × 19 × 41. 

 

Question # 5: Apply the Euclidean algorithm to find (373, 122):  

373 = 3(122) + 7 

122 = 17(7) + 3 

7 = 2(3) + 1 

3 = 3(1). 

Thus (373, 122) = 1. Since 1|3, the given equation is solvable. Solving backward 

for the remainders, we get 

1 = 373(35) − 122(107). 

Multiplying by 3, we get 

3 = 373(105) − 122(321). 

Thus one solution of the given equation is given by (𝑥0, 𝑦0) = (105, 321) and all 

solutions are given by 

𝑥 = 105 − 122𝑡, 𝑦 = 321 − 373𝑡 

where 𝑡 is an arbitrary integer.  

  

Question # 6: We use the binomial theorem: 

(𝑛 + 1)𝑛 = ∑ (
𝑛

𝑘
) 𝑛𝑘 = 1 + 𝑛2 + ∑ (

𝑛

𝑘
) 𝑛𝑘

𝑛

𝑘=2
.

𝑛

𝑘=0

 



Thus we get 

(𝑛 + 1)𝑛 − 1 = 𝑛2 + ∑ (
𝑛

𝑘
) 𝑛𝑘

𝑛

𝑘=2
. 

Since the first term is clearly divisible by 𝑛2 and each term in the sum is divisible by 

𝑛2 (as 𝑛2|𝑛𝑘 𝑓𝑜𝑟 𝑘 ≥ 2), then 𝑛2|(𝑛 + 1)𝑛 − 1. 

 

Question # 7: Assume that there is a positive integer 𝑛 and a positive integer 𝑥 such 

that 

1 + 𝑝1𝑝2 ⋯ 𝑝𝑛 = 𝑥2. 

Since 𝑝1 = 2, then 𝑥 > 1 is odd. We write the last equation in the form 

𝑝1𝑝2 ⋯ 𝑝𝑛 = (𝑥 − 1)(𝑥 + 1). 

Since 𝑥 > 1 is odd, then 𝑥 − 1 and 𝑥 + 1 are positive integers divisible by 2 and 

hence 4|(𝑥 − 1)(𝑥 + 1). This implies that 4|𝑝1𝑝2 ⋯ 𝑝𝑛 and hence 2|𝑝2 ⋯ 𝑝𝑛  (as 

𝑝1 = 2), a contradiction (since 𝑝1, 𝑝2, ⋯ , 𝑝𝑛   are odd primes). We conclude that 1 +

𝑝1𝑝2 ⋯ 𝑝𝑛 is not a perfect square for any positive integer 𝑛.  

 

Question # 8: Let 𝑛 > 2 be a positive integer. If 2𝑛 − 1 is prime, then 𝑛 = 𝑝 is an 

odd prime. This implies that 2𝑛 + 1 = 2𝑝 + 1 is composite as it is divisible by 2 +

1 = 3 (and 2𝑝 + 1 > 3.) Next, if 2𝑛 + 1 is prime, then 𝑛 = 2𝑘 for some positive 

integer 𝑘 > 1 (as 𝑛 > 2.) This implies that 2𝑛 − 1 = 22𝑘
− 1 = (22𝑘−1

−

1)(22𝑘−1
+ 1). Since both factors are greater than 1 and less than 2𝑛 − 1, we 

conclude that 2𝑛 − 1 is composite.  

 

Question # 9: Let (𝑎 − 𝑏, 𝑎3 + 𝑏3) = 𝑔. Then 𝑔|𝑎 − 𝑏 and 𝑔|𝑎3 + 𝑏3.  

Since 𝑎 − 𝑏|𝑎3 − 𝑏3, then we also have 𝑔|𝑎3 − 𝑏3. This implies that 

𝑔|(𝑎3 + 𝑏3) + (𝑎3 − 𝑏3) = 2𝑎3 

and 

𝑔|(𝑎3 + 𝑏3) − (𝑎3 − 𝑏3) = 2𝑏3 



Hence 𝑔|(2𝑎3, 2𝑏3). But (2𝑎3, 2𝑏3) = 2(𝑎3, 𝑏3) = 2 × 1 = 2 (as (𝑎, 𝑏) = 1.) Then 

𝑔|2 and hence 𝑔 = 1 𝑜𝑟 𝑔 = 2. [Note: 𝑔 = 2 if both 𝑎 𝑎𝑛𝑑 𝑏 are odd and 𝑔 = 1 if 

𝑎 𝑎𝑛𝑑 𝑏 have opposite parity.] 

 

Question # 10: Without loss of generality, we may assume that 𝑎 𝑎𝑛𝑑 𝑏 are 

positive.  

Assume first that 𝑀 = [𝑎, 𝑏]. Let (
𝑀

𝑎
,

𝑀

𝑏
) = 𝑔. Then 𝑔|

𝑀

𝑎
 and 𝑔|

𝑀

𝑏
 and hence 𝑎𝑔|𝑀 

and 𝑏𝑔|𝑀. This means that 𝑀 is a positive common multiple of 𝑎𝑔 and 𝑏𝑔 and 

hence [𝑎𝑔, 𝑏𝑔]|𝑀. As [𝑎𝑔, 𝑏𝑔] = 𝑔[𝑎, 𝑏] = 𝑔𝑀, then 𝑔𝑀|𝑀 implies 𝑔|1 and hence 

𝑔 = 1. 

Next assume (
𝑀

𝑎
,

𝑀

𝑏
) = 1. Then [

𝑀

𝑎
,

𝑀

𝑏
] =

𝑀

𝑎

𝑀

𝑏
. (Here we used the fact that 

[𝑥, 𝑦](𝑥, 𝑦) = 𝑥𝑦 when 𝑥 𝑎𝑛𝑑 𝑦 are positive integers.) Multiplying by 𝑎𝑏, we get 

[𝑏𝑀. 𝑎𝑀] = 𝑀2. But [𝑏𝑀, 𝑎𝑀] = 𝑀[𝑏, 𝑎]. Then we get 𝑀[𝑏, 𝑎] = 𝑀2 and hence 

[𝑏, 𝑎] = 𝑀.   

 


