King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Instructor: Khaled Furati

MATH 411 - Final - Term 142

Duration: 150 minutes

Student Name:

Q #	Points	Points
1		10
2		10
3		10
4		10
5		10
6		10
7		10
8		10
9		10
10		10
Total		100

- 1. Define the following.
 - (a) $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is twice differentiable at $a \in \Omega$.
 - (b) Directional derivative of $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ at $a \in \Omega$.
- 2. Let $R \subset \mathbb{R}^n$ be a rectangle and $f : R \to \mathbb{R}$ be a bounded function. Define the following:
 - (a) The Riemann sum, lower Darboux's sum, and upper Darboux's sum of f corresponding to a partition \mathcal{P} of R.
 - (b) f is Riemann integrable over R.
 - (c) f is Darboux integrable over R.
 - (d) $\int_{\Omega} f$, where $\Omega \subset R$ is a simple set.
- 3. State the following:
 - (a) The equivalence between the Riemann and Darboux definitions of the integral.
 - (b) Lebesgue criterion for integrability.
 - (c) Change of variables theorem for multiple integrals.
- 4. State the Fubini's theorem for elementary regions in \mathbb{R}^2 . Discuss the relation between the existence of the iterated integrals and the integrability of a function. (Hint. $f(x) = \frac{x^2 y^2}{(x^2 + y^2)^2}$.)
- 5. Let $R \subset \mathbb{R}^n$ be a closed rectangle. Show that if $f : R \to \mathbb{R}$ is continuous on R, then f is integrable on R.
- 6. Let $f : \Omega \to \mathbb{R}$ be integrable on a bounded simple set $\Omega \subset \mathbb{R}^n$. Show that if $f \equiv 0$ almost everywhere then $\int_{\Omega} f = 0$.
- 7. Let f be a real-valued differentiable function on an open convex set Ω in \mathbb{R}^n . Show that if $\nabla f(x) = 0$ on Ω then f is constant on Ω .
- 8. Let I = [0, 1], $J = I \cap Q$, $R = I \times I \times I$, and $\Omega = J \times J \times J$. Discuss the integrability on R of the function

$$f(x) = \begin{cases} 1, & x \in \Omega, \\ 0, & x \in R \setminus \Omega. \end{cases}$$

9. Let Ω be a set in \mathbb{R}^n and $f : \Omega \to (0, \infty)$. Let $\{U_k\}$ and $\{V_k\}$ be exhaustions of Ω . Suppose f is integrable over each U_k and each V_k . Show that

$$\lim_{k \to \infty} \int_{U_k} f = \lim_{k \to \infty} \int_{V_k} f.$$

10. Let f(x,y) be a continuous function on $[a,b] \times [c,\infty)$ and $F(x) = \int_c^\infty f(x,y) dy$.

- (a) Define the uniform convergence of the integral F(x).
- (b) State the Weierstrass M-test for uniform convergence.
- (c) Provide sufficient conditions for F(x) to be continuous on [a, b].
- (d) Discuss the continuity of the function $F(x) = \int_0^\infty 2xy e^{-xy^2} dy$ on [0, 1].