MATH 411 - Exam 2 - Term 142

Duration: 120 minutes

Student Name:

1. Define the following.

- (a) $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in \Omega$.
- (b) $a \in \Omega$ is a degenerate critical point of $f : \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$.
- 2. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Show that $D_T(a) = T$ for all $a \in \mathbb{R}^n$.
- 3. Let $f(x,y) = (x^2, x \sin y, e^{xy})$. Find $D_f(x,y)$.
- 4. Let f(x,y) = (2x y, xy) and g(u,v) = (u v, 2u + v). Use chain rule to find $D_{(f \circ g)}$.
- 5. Let f be a real-valued differentiable function on an open convex set Ω in \mathbb{R}^n . Show that if ∇f is bounded on Ω then f is Lipschitz on Ω .
- 6. Let $f(x,y) = x^2 y$ and $g(x,y) = x y^2$. Let h = (f,g). Compute $H_f(x,y)$ and $D_h^2(x,y)$.
- 7. Show that the function $f(x,y) = 2x + xy x^2y^4$ has a critical point but no local extrema.
- 8. Show that the equations

$$xy^{5} + yu^{5} + zv^{5} = 1$$

$$x^{5}y + y^{5}u + z^{5}v = 1$$

have a unique solution (u, v) = f(x, y, z) = (g(x, y, z), h(x, y, z)).

$\mathbf{Q}\#$	Points	Points
1		10
2		10
3		10
4		10
5		10
6		10
7		10
8		10
Total		80