King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

MATH 302 – Engineering Mathematics

Exam I (Term 142)

Duration: 120 Minutes		March 04, 2015
Name	: Solution key	ID # :
Section #	:	Serial #:

• Provide all **necessary steps** with **clear writing**.

• Mobiles and calculators are NOT allowed in the exam.

Question #	Marks	Maximum Marks
(1)		13
(2)		25
(3)		11
(4)		10
(5)		17
(6)		24
Total		100

- (1)
- (a) Define an *orthonormal* set of vectors.

Answer: A set of vectors is orthonormal if every pair of distinct vectors is orthogonal and each vector in the set is a unit vector.

(**b**) What is an *orthogonal* matrix?

Answer: An $n \times n$ nonsingular matrix A is orthogonal if $A^{-1} = A^T$.

(c) Suppose the system AX = B is consistent, A is a 5 × 8 matrix and rank(A|B) = 5. How many *parameters* does the solution of the system have?

Answer: The solution of the system has 8 - 5 = 3 parameters.

- (d) Consider the homogeneous system with n equations in n variables AX = 0. What can we say about the solution(s) of the system if
 - (i) **A** is singular?

Answer: The system has the nontrivial solutions (infinitely many solutions).

(ii) A is nonsingular?

Answer: The system has only the trivial solution (a unique solution).

Solution: E_{λ} is nonempty since **0** is in E_{λ} .

Let x_1, x_2 be in E_{λ} . We have $A x_1 = \lambda x_1$ and $A x_2 = \lambda x_2$.

Since **A** $(x_1 + x_2) = \mathbf{A} x_1 + \mathbf{A} x_2 = \lambda x_1 + \lambda x_2 = \lambda (x_1 + x_2)$, $x_1 + x_2$ is also in E_{λ} .

Let k be a scalar. Since $\mathbf{A}(k\mathbf{x}_1) = k\mathbf{A}\mathbf{x}_1 = k\lambda \mathbf{x}_1 = \lambda (k\mathbf{x}_1)$, $k\mathbf{x}_1$ is also in \mathbf{E}_{λ} .

Hence, E_{λ} is a subspace of \mathbb{R}^n .

(b) Consider the vector space

$$\mathbf{S} = \{ \langle u, v, x, y \rangle | u + v + x = 0, y + 2u = v \text{ and } u, v, x, y \in \mathbb{R} \}.$$

Find a *basis* and the *dimension* of **S**.

Solution: Let $\langle u, v, x, y \rangle$ be in **S**. We can write

$$< u, v, x, y > = < u, v, -u - v, v - 2u >$$
$$= < u, 0, -u, -2u > + < 0, v, -v, v >$$
$$= u < 1, 0, -1, -2 > + v < 0, 1, -1, 1 >.$$

So, every vector in S is a linear combination of the vectors $\mathbf{a} = <1, 0, -1, -2 >$ and $\mathbf{b} = <0, 1, -1, 1 >$.

Since **a** is not a scalar multiple of **b**, the set $\mathbf{B} = \{a, b\}$ is linearly independent.

Hence, $\mathbf{B} = \{< 1, 0, -1, -2 >, < 0, 1, -1, 1 >\}$ is a basis for S. The dimension of S is 2. (3) Consider the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 3 & -1 \\ 1 & -1 & 4 & 3 \\ 1 & -1 & 5 & 7 \end{pmatrix}.$$

(a) Find the *rank* of **A**.

Solution: Applying Gaussian Elimination to matrix A gives

$$\begin{pmatrix} 1 & -1 & 3 & -1 \\ 1 & -1 & 4 & 3 \\ 1 & -1 & 5 & 7 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} 1 & -1 & 3 & -1 \\ 0 & 0 & 1 & 4 \\ 1 & -1 & 5 & 7 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} 1 & -1 & 3 & -1 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 2 & 8 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} 1 & -1 & 3 & -1 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} 1 & -1 & 3 & -1 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} .$$

Hence, $rank(\mathbf{A}) = \mathbf{2}$

(b) Is the set of row vectors of **A** linearly *independent*? *Justify* your answer.

Answer: No, it is not. The set of row vectors of **A** is *linearly dependent* since rank(**A**) is less than the number of row vectors of **A**.

(4) Solve the following system using *Gauss-Jordan Elimination* method:

$$x_1 + x_2 + x_3 = 5$$

$$2x_1 + 3x_2 + 5x_3 = 8$$

$$4x_1 + 5x_3 = 2$$

Solution: Applying *Gauss-Jordan Elimination* to the augmented matrix of the system gives

$$\begin{pmatrix} 1 & 1 & 1 & | & 5 \\ 2 & 3 & 5 & | & 8 \\ 4 & 0 & 5 & | & 2 \end{pmatrix} \xrightarrow{-2R_1 + R_2} \begin{pmatrix} 1 & 1 & 1 & | & 5 \\ 0 & 1 & 3 & | & -2 \\ 0 & -4 & 1 & | & -18 \end{pmatrix}$$

$$\begin{array}{c} -R_2 + R_1 \\ \Rightarrow \\ 4R_2 + R_3 \end{pmatrix} \begin{pmatrix} 1 & 0 & -2 & | & 7 \\ 0 & 1 & 3 & | & -2 \\ 0 & 0 & 13 & | & -26 \end{pmatrix} \xrightarrow{1}_{13} R_3 \begin{pmatrix} 1 & 0 & -2 & | & 7 \\ 0 & 1 & 3 & | & -2 \\ 0 & 0 & 1 & | & -2 \end{pmatrix}$$

$$\begin{array}{c} 2R_3 + R_1 \\ \Rightarrow \\ -3R_3 + R_2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & 4 \\ 0 & 0 & 1 & | & -2 \end{pmatrix}.$$

Hence, the solution of the system is $(x_1, x_2, x_3) = (3, 4, -2)$.

(5) (a) Find matrix
$$(\mathbf{AB})^{-1}$$
 if $\mathbf{A} = \begin{pmatrix} 2 & -1 & 2 \\ 1 & -1 & 2 \\ -3 & 2 & -3 \end{pmatrix}$ and $\mathbf{B}^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

Solution: Applying Gauss-Jordan Elimination to the matrix (**A**|**I**) gives

$$\begin{pmatrix} 2 & -1 & 2 & | & 1 & 0 & 0 \\ 1 & -1 & 2 & | & 0 & 1 & 0 \\ -3 & 2 & -3 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_{12}} \begin{pmatrix} 1 & -1 & 2 & | & 0 & 1 & 0 \\ 2 & -1 & 2 & | & 1 & 0 & 0 \\ -3 & 2 & -3 & | & 0 & 0 & 1 \end{pmatrix}$$

We obtain
$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 3 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$

and

$$(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 3 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -1 & 2 \\ 2 & 0 & 1 \\ 4 & 1 & 3 \end{pmatrix}$$

(b) Solve the system (AB) X = C, where A and B are the matrices given in (a),

$$\mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ and } \mathbf{C} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Solution:

$$\mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = (\mathbf{AB})^{-1}\mathbf{C} = \begin{pmatrix} 4 & -1 & 2 \\ 2 & 0 & 1 \\ 4 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ 7 \end{pmatrix}.$$

(6) Let
$$\mathbf{A} = \begin{pmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$
.

(a) Explain why A is orthogonally diagonalizable. Answer: Since A is a symmetric matrix.

(b) Find *eigenvalues* of A.

Solution: Characteristic equation of A is

$$\begin{vmatrix} -\lambda & 2 & 2 \\ 2 & -\lambda & 2 \\ 2 & 2 & -\lambda \end{vmatrix} = -\lambda(\lambda^2 - 4) - 2(-2\lambda - 4) + 2(4 + 2\lambda) = -(\lambda + 2)^2(\lambda - 4) = 0.$$

This gives the eigenvalues of A: $\lambda_1 = \lambda_2 = -2$ and $\lambda_3 = 4$.

(c) Find an *orthogonal matrix* **P** that diagonalizes **A** and find the *diagonal matrix*

 $\mathbf{D} = \mathbf{P}^T \mathbf{A} \mathbf{P}.$

Solution: For $\lambda_1 = \lambda_2 = -2$, we have

$$\begin{pmatrix} 2 & 2 & 2 & | & 0 \\ 2 & 2 & 2 & | & 0 \\ 2 & 2 & 2 & | & 0 \end{pmatrix} \quad Row \ operation \implies \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}.$$

Two corresponding orthogonal eigenvectors are $K_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad K_2 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$

For $\lambda_3 = 4$, we have

$$\begin{pmatrix} -4 & 2 & 2 & | & 0 \\ 2 & -4 & 2 & | & 0 \\ 2 & 2 & -4 & | & 0 \end{pmatrix} \text{ Row operation} \Rightarrow \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

The corresponding eigenvector is $K_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

The required orthogonal matrix is
$$P = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 0 & -2/\sqrt{6} & 1/\sqrt{3} \end{pmatrix}$$

and the diagonal matrix is $D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.