	King Fahd University of Petroleu Department of Mathematics of Math 301 Major Exa The Second Semaster of 2014	ım & Minerals & Statistics am 2 2015 (142)
	The Second Semester of 2014	<u>Time Allowed</u> : 120 Minutes
Name:	ID#:	
Instructor:	Sec #:	Serial #:

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		15
2		15
3		12
4		12
5		10
6		10
7		14
8		12
Total		100

Q:1 (7+8 points) Find the following:

(a) $\mathcal{L}^{-1}\left\{\frac{1}{s(s+1)^2}\right\}$, by using convolution, (b) Write $f(t) = \begin{cases} \sin(t), & 0 \le t < \pi \\ e^{2t}\cos(t), & t \ge \pi \end{cases}$

in compact form using unit step function and find its Laplace transform.

 $\mathbf{Q:2}$ (5+5+5 points) Find the following:

(a)
$$\mathcal{L} \{ te^{-2t} \cos 3t \},$$

(b) $\mathcal{L} \{ f(t) \},$ where $f(t) = \begin{cases} 2t+1, & 0 \le t < 1 \\ 0, & t \ge 1 \end{cases}$
(c) $\mathcal{L}^{-1} \{ \frac{s}{s^2+2s-3} \}.$

 $\mathbf{Q:3}$ (12 points) Solve the following boundary value problem using Laplace transform

 $y'' + 9y = \cos 2t$ with $y(0) = 1, y(\frac{\pi}{2}) = -1.$

Q:4 (12 points) Solve the following Volterra integral equation $f(t) + \frac{8}{3} \int_{0}^{t} f(\tau)(\tau - t)^{3} d\tau = 1 + t$.

Q:5 (10 points) Solve the following initial value problem using Laplace transform

 $y'' + 6y' + 10y = \delta(t - 2\pi)$ with y(0) = 1, y'(0) = 1.

Q:6 (10 points) Show that $f_1(x) = x^3$ and $f_2(x) = x^2 + 1$ are orthogonal on [-1, 1]. Find values of a and b such that both $f_1(x)$ and $f_2(x)$ are orthogonal to $f_3(x) = ax + bx^2 + x^3$.

Q:7 (14 points) Find the Fourier series of the function $f(x) = \begin{cases} 0 & -\frac{\pi}{2} < x < 0\\ \cos x & 0 \le x < \frac{\pi}{2} \end{cases}$.

Q:8 (8+4 points) (a) Find the half-range Fourier cosine expansion of $f(x) = \sin 4x$, $0 \le x < \frac{\pi}{8}$.

(b) Use part (a) to show that
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}$$
.