King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 301 Major Exam 1

The Second Semester of 2014-2015 (142)

Time Allowed: 120 Minutes

Name:	ID#:		
Instructor:	Sec #:	Serial #:	
M I I I I I I I I I I I I I I I I I I I	11 1: (1:		
• Mobiles and calculators are not	allowed in this exam.		
• Write all steps clear.			

Question #	Marks	Maximum Marks
1		12
2		10
3		12
4		12
5		10
6		15
7		14
8		15
Total		100

Q:1 (12 points) Find length of the curve traced by $\vec{r}(t) = e^{3t}\cos(2t)\,\mathbf{i} + e^{3t}\sin(2t)\mathbf{j} + e^{3t}\mathbf{k}$ on the interval $0 \le t \le 2\pi$. Also find equation of tangent line to the curve at $t = \pi$.

- **Q:2** (a) (5 points) Find the directional derivative of $f(x, y, z) = 2xz + 3xy^2 + yz^2$ at (-1, 1, 2) in the direction of $2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$.
 - (b) (5 points) Find the direction in which f increases most rapidly and the value of maximum rate of change of f at (2,1,-3).

Q:3 (12 points) Let $\vec{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $\vec{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ is a constant vector. Show that

(a)
$$\nabla \times [(\vec{r} \cdot \vec{r}) \ \vec{a}] = 2(\vec{r} \times \vec{a})$$

(b)
$$\nabla \cdot [(\vec{r} \cdot \vec{r}) \vec{a}] = 2(\vec{r} \cdot \vec{a})$$

Q:4 (12 points) Determine whether the vector field $\vec{F}(x, y, z) = (2x \sin y + e^{3z}) \mathbf{i} + (x^2 \cos y) \mathbf{j} + (3xe^{3z} + 5) \mathbf{k}$ is a conservative field. If so, find the potential function $\phi(x, y, z)$ for \vec{F} .

Q:5 (10 points) Use Green's theorem to evaluate the line integral

$$\oint_C (2x^3 - 2y^3) dx + (2x^3 - 3e^y) dy,$$

 $C = C_1 \bigcup C_2$, where C_1 is a positively oriented circle $x^2 + y^2 = 9$ and C_2 is a negatively oriented circle $x^2 + y^2 = 4$.

Q:6 (15 points) Find the surface area of the portions of the sphere $x^2 + y^2 + z^2 = 16$ that are within the cylinder $x^2 + y^2 = 4y$.

Q:7 (14 points) Use Stokes' theorem to evaluate the integral $\iint_S curl(F) \cdot \hat{n} \ dS$, where

$$\vec{F} = \frac{xz}{4}\mathbf{i} + 4xy\mathbf{j} + 3xyz\mathbf{k}$$
 and S is the portion of the paraboloid $z = x^2 + 4y^2$

for $0 \le z \le 16$ in the first octant.

Q:8 (15 points) Use divergence theorem to evaluate $\iint_S (\vec{F}.\hat{n}) dS$ where $\vec{F} = 6xz\mathbf{i} + 5y^2\mathbf{j} - 3z^2\mathbf{k}$ and D the region bounded by z = y, z = 4 - y, $z = 2 - \frac{1}{2}x^2$, x = 0 and z = 0.